

Towards Distributed Intelligence
A High Level Definition

G. Broten, S. Monckton, J. Giesbrecht, S. Verret, J. Collier & B. Digney
Defence R&D Canada – Suffield

Technical Report

DRDC Suffield TR 2004-287

December 2004

Defence Research and Recherche et développement
Development Canada pour la défense Canada

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Towards Distributed Intelligence (U)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defence R&D Canada - Suffield,PO Box 4000,Medicine Hat, AB,CA,T1A
8K6

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
Unmanned Ground Vehicle (UGV’s) Research and Development within the Autonomous Land Systems
(ALS) project will assist the Canadian Forces in fulfilling their future mandate. The ALS project derives
its focus from the Autonomous Intelligent Systems (AIS) activity outlined by the DRDC Technology
Investment Strategy (TIS). There are five anticipated classes of Unmanned Vehicles (UV): fixed or rotor
wing aircraft Unmanned Air Vehicles (UAV); typically tracked, wheeled, legged Unmanned Ground
Vehicles (UGV); stationary monitoring Unattended Ground Sensors (UGS); untethered, propellor or
bouyancy driven, Unmanned Underwater Vehicles (UUV); and light propellor driven Unmanned Surface
Vehicles (USV). The future battlespace demands compatibility between all UV classes. All UVs must have
an inherent ability to share information if they are to provide the desired force multipication factor for the
future asymetric battlespace. To effectively distribute intelligence modules within and between UVs,
layered modular hardware design and portable, maintainable coding practice require an architecture that,
at once, intrinsically supports and encourages distributed computing, and frees investigators to focus on
the development of intelligent single and multi-vehicle control systems. An architecture founded on these
elements defines, at a high level, the links between various software components that create an operational
vehicle. Ideally, architectures should seamlessly transition between real vehicle control; system diagnosis
through the replay of gathered data; and the control of a vehicle in a simulated world. Ideally, the
investigator is then free to develop intelligence algorithms without vehicle implementation distractions.
With satisfactory simulated performance, algorithms may be safely run on a physical vehicle. Conversely,
historical data gathered from a real vehicle run can be replayed in a simulated environment to investigate,
debug and optimize the algorithm performance. This document explores the depths of the multi-vehicle
architecture problem using the past experience of other investigators, the apparent technological evolution
of both hardware and software, and the demands of the future CF environment. This report overviews
fundamental methods in multi-vehicle cooperation and coordination, single vehicle autonomous control,
and the underlying infrastructure of real and simulated systems.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

92

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Towards Distributed Intelligence
A High Level Definition

G. Broten, S. Monckton, J. Giesbrecht, S. Verret, J. Collier & B. Digney
Defence R&D Canada – Suffield

Defence R&D Canada – Suffield
Technical Report
DRDC Suffield TR 2004-287
December 2004

© Her Majesty the Queen as represented by the Minister of National Defence, 2004

© Sa majesté la reine, représentée par le ministre de la Défense nationale, 2004

DRDC Suffield TR 2004-287 i

Abstract

Unmanned Ground Vehicle (UGV’s) Research and Development within the
Autonomous Land Systems (ALS) project will assist the Canadian Forces (CF) in
fulfilling their future mandate. The ALS project derives its focus from the
Autonomous Intelligent Systems (AIS) activity outlined by the DRDC Technology
Investment Strategy (TIS).

There are five anticipated classes of Unmanned Vehicles (UV): fixed or rotor wing
aircraft Unmanned Air Vehicles (UAV); typically tracked, wheeled, legged
Unmanned Ground Vehicles (UGV); stationary monitoring Unattended Ground
Sensors (UGS); untethered, propellor or bouyancy driven, Unmanned Underwater
Vehicles (UUV); and light propellor driven Unmanned Surface Vehicles (USV). The
future battlespace demands compatibility between all UV classes. All UVs must have
an inherent ability to share information if they are to provide the desired force
multipication factor for the future asymetric battlespace.

To effectively distribute intelligence modules within and between UVs, layered
modular hardware design and portable, maintainable coding practice require an
architecture that, at once, intrinsically supports and encourages distributed computing,
and frees investigators to focus on the development of intelligent single and multi-
vehicle control systems. An architecture founded on these elements defines, at a high
level, the links between various software components that create an operational
vehicle. Ideally, architectures should seamlessly transition between real vehicle
control; system diagnosis through the replay of gathered data; and the control of a
vehicle in a simulated world. Ideally, the investigator is then free to develop
intelligence algorithms without vehicle implementation distractions. With satisfactory
simulated performance, algorithms may be safely run on a physical vehicle.
Conversely, historical data gathered from a real vehicle run can be replayed in a
simulated environment to investigate, debug and optimize the algorithm performance.

This document explores the depths of the multi-vehicle architecture problem using the
past experience of other investigators, the apparent technological evolution of both
hardware and software, and the demands of the future CF environment. This report
overviews fundamental methods in multi-vehicle cooperation and coordination, single
vehicle autonomous control, and the underlying infrastructure of real and simulated
systems.

ii DRDC Suffield TR 2004-287

Résumé

La recherche et développement dans le domaine des véhicules terrestres sans pilote
appartenant au projet des Systèmes terrestres autonomes (STA) aidera les Forces
canadiennes (FC) à remplir leur mandat futur. Le projet STA est articulé autour de
l’activité des Systèmes intelligents autonomes (SIA), soulignée par la Stratégie
d’investissement technologique (TIS) de RDDC.

On prévoit cinq catégories de véhicules sans pilote : les véhicules aériens télépilotés
(UAV) à ailes fixes ou à voilure tournante; les véhicules terrestres sans pilote (UGV)
ordinaires à chenilles, sur roues ou sur jambes; les capteurs au sol isolés (UGS) de
surveillance stationnaire ; les véhicules sous-marins sans équipage (UUV) sans
ancrage, dirigés par propulsion ou flottaison ainsi que les véhicules sans pilote de
surface dirigés par propulsion légère. Les futurs espaces de combat exigent que toutes
les catégories de véhicules sans pilote soient compatibles. Tous ces derniers doivent
posséder une capacité inhérente à mettre l’information en commun si celle-ci fournit
la force de facteur de multiplication souhaitée pour le futur espace de combat
asymétrique.

Pour répartir efficacement les modules d’intelligence à l’intérieur et entre les
véhicules sans pilote, la conception modulaire et multidimensionnelle du matériel
ainsi que la pratique de codage maintenable et portable exigent une architecture qui,
sur-le-champ, soutient intrinsèquement et encourage un traitement réparti et qui libère
également les chercheurs pour que ceux-ci puissent focaliser sur la mise au point de
systèmes de contrôle intelligents d’un seul véhicule et d’un groupe de véhicules. Une
architecture fondée sur ces éléments, définit à un haut niveau, les liens entre des
composants de logiciels variés qui créent un véhicule fonctionnel. Les architectures
devraient idéalement faire une transition harmonieuse à partir du contrôle d’un
véhicule réel vers le diagnostic du système et la retransmission des données pour
accomplir enfin l’exécution du contrôle d’un véhicule dans un contexte de simulation.
Idéalement, ceci libère le chercheur qui est alors en mesure de mettre au point des
algorithmes d’enregistrement sans être distrait par l’implémentation sur véhicule. Si
la performance simulée est satisfaisante, les algorithmes peuvent être effectués sur un
véhicule réel. Inversement, les données historiques recueillies à partir d’un véhicule
réel peuvent être retransmises dans un contexte de simulation pour étudier, déboguer
et optimiser la performance de l’algorithme.

Ce document explore en profondeur le problème de l’architecture d’un groupe de
véhicules en tenant compte de l’expérience acquise par d’autres chercheurs, de
l’évolution technologique apparente du matériel et des logiciels ainsi que des besoins
du milieu auquel les FC seront exposées à l’avenir. Ce rapport donne un aperçu des
méthodes fondamentales concernant la coopération et la coordination d’un groupe de
véhicules, le contrôle d’un seul véhicule sans pilote et l’infrastructure sous-jacente de
systèmes réels et simulés.

DRDC Suffield TR 2004-287 iii

Executive summary

Background:Unmanned Ground Vehicle (UGV’s) Research and Development within
the Autonomous Land Systems (ALS) project will assist the Canadian Forces (CF) in
fulfilling their future mandate. The ALS project derives its focus from the
Autonomous Intelligent Systems (AIS) activity outlined by the DRDC Technology
Investment Strategy (TIS). The TIS defines Autonomous Intelligent Systems as [54]

“...automated or robotic systems that operate and interact in the complex
unstructured environments of the future battlespace”

There are five anticipated classes of Unmanned Vehicles (UV): fixed or rotor wing
aircraft Unmanned Air Vehicles (UAV); typically tracked, wheeled, legged
Unmanned Ground Vehicles (UGV); stationary monitoring Unattended Ground
Sensors (UGS); untethered, propeller or buoyancy driven, Unmanned Underwater
Vehicles (UUV); and light propeller driven Unmanned Surface Vehicles (USV).

This document explores the depths of the multi-vehicle architecture problem using the
past experience of other investigators, the apparent technological evolution of both
hardware and software, and the demands of the future CF environment. Considerable
research within real and simulated systems has revealed fundamental approaches to
multi-vehicle cooperation and coordination, single vehicle autonomous control, and
the underlying infrastructure to make these systems possible. The military and
industry have produced internet infrastructures that hold promise for future vehicle
and multi-vehicle systems, while posing additional engineering design and
development problems. Therefore, this document reviews multi-vehicle coordination,
single vehicle control, vehicle software infrastructures, and simulation systems, each
a critical element in modern multi-vehicle research.

Principal Conclusions: Unmanned Multi-vehicle systems are a relatively new
concept with few clear trends in collective command and control mechanisms. Given
tenuous battlefield communications, centralized schemes of task allocation appear
less attractive while collaborative or negotiation based systems may be more
practical. Ultimately a layered deliberative/reactive system with stigmergic and
explicit communications may prove the most versatile and robust.

Mainstream research in single vehicle autonomy has swung from logical or
deliberative methods through instinctive or reactive methods to settle on a mixture of
long term planning and short term instinctive control schemes. Many systems
recognize that no single control scheme will adequately capture the full control
problem and, therefore, exploit multiple control strategies simultaneously using
environmental triggers or longer term plans to engage or mix control schemes.
Further, many larger systems draw on multiprocess architectures and network
capabilities to achieve satisfactory performance.

iv DRDC Suffield TR 2004-287

Any multi-vehicle infrastructure, particularly within a research environment, must be
based on highly modular and extensible software components that supports
distributed code development and execution. Subsequent architectures must define, at
a high level, how the various software components are linked to create an operational
vehicle. Such systems must support real world operations, the recorded data playback,
and integration with a simulated environment. Its modular design must encourage
engineers and scientists to concentrate on developing algorithms supporting
autonomy without sinking into the details of the vehicle implementation.

Military, Industrial, and academic research clearly points towards the Common
Object Request Broker Architecture (CORBA) as the favoured communications
middleware. The TAO implementation of CORBA implements a real-time version of
CORBA boasting impressive performance capabilities. The Miro framework, perhaps
the best example in vehicle control is the Miro framework, offers CORBA services
tailored to autonomous vehicle applications. The use, extension, and formalization of
this framework will significantly assist in the development of autonomous vehicle
applications.

Simulation provides multi-vehicle C2 experimental environments, single vehicle
tactical simulation and internal software design simulation capabilities to DRDC’s
multi-vehicle research effort. While simulation systems are generally designed for
specific simulation problems, a number of generic or all-inclusive simulation systems
provide some of the necessary capabilities. Given that no single simulator supports
UAVs, UGVs, UGSs and UUVs, this document proposes to extend the capabilities of
the Gazebo 3D simulator to support more UAV types and to include support for
UUVs and UGSs. Extending Gazebo is possible due to its open source nature that
encourage users to enhance it capabilities.

Significance of Results: For DRDC, any credible multi-vehicle architecture must
allow information to easily flow to wherever it is required. This seamless flow of
information encourages scalability and extensibility whether it be within a single UV
or a multi-vehicle group. With the future battlespace largely undefined, scalability
and extensibility is a key requirement to accommodate the co-evolution of technology
and doctrine.

As described in this document, the MIRO framework and ACE/TAO foundations
exemplify highly modular, extensible, and reusable components with direct research
benefits. This component framework will ease installation across DRDC systems and,
significantly, will simplify cooperation with other research institutions. Components
achieve these goals by defining information sharing standards between processes.
Thus the distribution details remain hidden from the researcher, allowing full research
effort to focus on increasing vehicle capabilities. The network foundations of these
tools are well tailored for the implementation of distributed intelligence. Information
flows as easily between independent UVs as it does within a single UV. For example,
allowing an UAV to share its bird’s eye view of the world with an UGV located on
the ground and a UGV to pass its current position to a field of UGSs.

DRDC Suffield TR 2004-287 v

When all of these capabilities are taken together, an open, powerful foundation for
UV research and development in both real and simulated worlds becomes apparent.
This foundation simplifies the creation and integration of new capabilities,
encourages re-use on different platforms. With these tools and techniques, future
systems will focus research on the intelligence within and between multiple
autonomous unmanned vehicles by intrinsically supporting distributed operations.

G. Broten, S. Monckton, J. Giesbrecht, S. Verret, J. Collier, B. Digney. 2004. Towards
Distributed Intelligence. DRDC Suffield TR 2004-287. Defence R&D Canada – Suffield.

vi DRDC Suffield TR 2004-287

Sommaire

Contexte : La recherche et développement au sujet des véhicules terrestres sans pilote
appartenant au projet des Systèmes terrestres autonomes (STA) aidera les Forces
canadiennes (FC) à remplir leur mandat futur. Le projet STA est articulé autour de
l’activité des Systèmes intelligents autonomes (SIA), soulignés par la Stratégie
d’investissement technologique (SIT) de RDDC. Ce SIT définit les Systèmes
intelligents autonomes comme [54]

« ...systèmes automatisés ou robotisés qui opèrent et interagissent dans les
milieux complexes et non structurés des futurs espaces de combats.»

On prévoit cinq catégories de véhicules sans pilote : les véhicules aériens télépilotés
(UAV) à ailes fixes ou à voilure tournante; les véhicules terrestres sans pilote (UGV)
ordinaires à chenilles, sur roues ou sur jambes; les capteurs au sol isolés (UGS) de
surveillance stationnaire ; les véhicules sous-marins sans équipage (UUV) sans
ancrage, dirigés par propulsion ou flottaison ainsi que les véhicules sans pilote de
surface (USV) dirigés par propulsion légère.

Ce document explore en profondeur le problème de l’architecture d’un groupe de
véhicules en tenant compte de l’expérience acquise par d’autres chercheurs, de
l’évolution technologique apparente du matériel et des logiciels ainsi que des besoins
du milieu auquel les FC seront exposées à l’avenir. Une recherche considérable
concernant les systèmes réels et simulés a révélé des méthodes fondamentales à la
coopération et à la coordination d’un groupe de véhicules, au contrôle d’un seul
véhicule autonome et à l’infrastructure sous-jacente qui rend ces systèmes possibles.
L’armée et l’industrie ont produit des infrastructures Internet prometteuses pour les
futurs systèmes de véhicules et de groupes de véhicules mais ces infrastructures
posent des problèmes additionnels en termes de conception technique et de mise au
point. Ce document examine, par conséquent, la coordination d’un groupe de
véhicules, le contrôle d’un seul véhicule, les infrastructures de logiciels de véhicules
et des systèmes de simulation, chacun de ces éléments étant essentiel à la recherche
moderne sur les groupes de véhicules.

Conclusions principales : Les systèmes de groupes de véhicules sans pilote sont un
concept relativement nouveau qui évolue clairement vers la commande collective et
les mécanismes de contrôle. Étant donné la fragilité des communications sur le champ
de bataille, les schémas d’allocation de tâches centralisés semblent moins attirants que
ceux des systèmes à base de collaboration ou de négociation plus pratiques. À la
limite, un système multidimensionnel délibératif / réactif permettant des
communications stigmergiques et explicites peut se montrer plus polyvalent et plus
robuste.

La tendance dominante de la recherche au sujet de l’autonomie d’un seul véhicule a
pivoté à partir de méthodes logiques ou de délibération vers des méthodes instinctives
ou réactives pour s’établir sur un mélange de schémas de contrôle instinctifs de

DRDC Suffield TR 2004-287 vii

planification à long et à court terme. Beaucoup de systèmes reconnaissent qu’aucun
schéma de contrôle simple ne capture de manière adéquate le problème du contrôle
complet et ils exploitent ainsi les stratégies de contrôle polyvalent qui utilisent
simultanément les déclencheurs environnementaux ou des plans à long terme pour
procéder ou qui mélangent des schémas de contrôle. De plus, pour réaliser une
performance satisfaisante, beaucoup de systèmes plus importants s’articulent autour
d’architectures multiprocesseurs ayant des capacités de réseau.

Toutes les infrastructures de groupes de véhicules doivent être basées, surtout dans un
climat de recherche, sur des composants de logiciels hautement modulaires et
extensibles qui soutiennent le développement décentralisé des codes et l’exécution de
ces derniers. Les architectures qui en découlent doivent définir, à haut niveau, le lien
entre les composants de logiciels variés, afin de créer un véhicule opérationnel. De
tels systèmes doivent soutenir des opérations mondiales réelles, relire les données
enregistrées et intégrer le tout dans un milieu simulé. Les conceptions modulaires
doivent encourager les ingénieurs et les scientifiques à se concentrer sur le
développement d’algorithmes qui soutiennent l’autonomie sans se perdre dans les
détails de l’implémentation du véhicule.

La recherche militaire, industrielle et académique pointent clairement vers
l’architecture CORBA comme le meilleur logiciel médiateur en matière de
communication. L’implémentation TAO de CORBA implémente une version en
temps réel de CORBA qui prétend avoir des capacités de performance
impressionnantes. Le cadriciel Miro, qui est peut-être le meilleur exemple en matière
de contrôle de véhicule, offre à CORBA, des services adaptés aux applications des
véhicules sans pilote. L’utilisation, l’extension et l’élaboration de ce cadriciel
appuieront de manière importante la mise au point des applications de véhicules sans
pilote.

La simulation fournit à l’effort en recherche sur les groupes de véhicules de RDDC,
un milieu expérimental pour le groupe de véhicules C2. Elle fournit aussi des
capacités de simulation tactique pour un seul véhicule et des capacités internes de
conception de logiciel de simulation. Alors que les systèmes de simulation sont
conçus en général pour des problèmes de simulation spécifiques, un certain nombre
de systèmes de simulation génériques ou globaux apportent quelques-unes unes des
capacités nécessaires. Étant donné qu’aucun simulateur ne soutient les UAV, UGV,
UGS ni les UUV, ce document propose d’étendre les capacités du simulateur Gazebo
3D pour soutenir un plus grand nombre de types de véhicules aériens télépilotés et
pour inclure le soutien aux UUV et UGS. Étendre Gazebo est possible du fait de la
nature de sa source qui est non secrète, ce qui encourage les utilisateurs à améliorer
ses capacités.

La portée des résultats : En ce qui concerne RDDC, toute architecture crédible de
groupes de véhicules doit permettre le libre flot de l’information partout où celui-ci
est requis. Le flot non interrompu de l’information encourage la variabilité
dimensionnelle et l’extensibilité à l’intérieur d’un seul véhicule sans pilote comme à
l’intérieur d’un groupe de véhicules. L’avenir des espaces de combat étant surtout

viii DRDC Suffield TR 2004-287

indéfini, la variabilité dimensionnelle et l’extensibilité est un besoin clé qui permettra
de réaliser simultanément l’évolution de la technologie et de la doctrine.

Tel que décrit dans ce document, le cadriciel MIRO et les fondations ACE/TAO sont
l’exemple de composants hautement modulaires, extensibles et réutilisables qui
bénéficient directement la recherche. Ce cadriciel de composants facilitera
l’installation de systèmes à RDDC et simplifiera de manière importante la
coopération entre les établissements de recherche. Les composants atteignent ces buts
en définissant les normes d’échange de l’information entre les processus. Les détails
de la répartition demeurent cachés au chercheur, permettant ainsi à l’effort complet de
recherche de se concentrer sur l’augmentation des capacités des véhicules.
L’infrastructure du réseau de ces outils est bien adaptée à l’implémentation de
l’intelligence répartie. L’information est transmise aussi facilement entre les véhicules
sans pilote qu’à l’intérieur d’un seul véhicule. Elle permet à un véhicule aérien
télépiloté, par exemple, de partager sa vue à vol d’oiseau du monde avec un UGV
placé au sol et avec un UGV qui transmettra sa position actuelle à un champ de UGS.

Quand toutes ces capacités sont mises ensemble, une fondation ouverte et puissante
devient apparente pour la recherche et le développement dans le domaine des
contextes réels ou simulés. Cette fondation simplifie la création et l’intégration de
nouvelles capacités et encourage la réutilisation de différentes plates-formes. Au
moyen de ces outils et de ces techniques, les systèmes futurs se concentreront sur la
recherche et l’intelligence à l’intérieur et entre les groupes de véhicules sans pilote et
soutiendront intrinsèquement les opérations réparties.

G. Broten, S. Monckton, J. Giesbrecht, S. Verret, J. Collier, B. Digney. 2004. Towards
Distributed Intelligence. DRDC Suffield TR 2004-287. R & D pour la défense Canada – Suffield.

Table of contents

Abstract . i

Resume . ii

Executive Summary . iii

Sommaire . vi

Table of contents . ix

List of figures . xiv

List of tables . xv

1. Introduction . 1

2. Multi-Robot Architectures . 2

2.1 Introduction . 2

2.2 Background . 3

2.2.1 Seminal Research . 3

2.2.2 System Architectures . 3

2.2.3 Control Strategies . 6

2.2.4 Communication . 7

2.3 Discussion . 8

2.4 Recommendations/Conclusions . 8

3. Control Architectures . 9

3.1 Introduction . 9

3.2 Background . 10

3.2.1 Raibert’s Hopping Robot . 11

3.2.2 Andersson’s Ping-Pong Player 12

3.2.3 Task Control Architecture (TCA) 12

3.2.4 Distributed Architecture for Mobile Navigation (DAMN) 13

DRDC Suffield TR 2004-287 ix

3.2.5 Motor Schemas . 14

3.2.6 Subsumption Architecture . 14

3.2.7 Reynold’s Boids . 16

3.2.8 Sensor-Actuator Networks . 16

3.3 Discussion . 17

3.3.1 Redundant Control . 17

3.3.2 Control Rate Spectrum . 17

3.3.3 Model based Control . 17

3.3.4 Distributed Processing . 18

3.3.5 Arbitration . 18

3.4 Recommendations/Conclusions . 18

4. Infrastructure Services . 19

4.1 Introduction . 19

4.2 Background . 19

4.3 Data Flow Patterns . 20

4.3.1 Message Based Communications 21

4.3.2 Information Based Communications 21

4.3.3 Conclusions . 21

4.4 Communications Middleware . 22

4.4.1 Introduction . 22

4.4.2 Background . 22

4.4.3 IPT - Interprocess Communications Toolkit 23

4.4.4 RTC - Real-Time Communications 23

4.4.5 NML - Neutral Messaging Language 23

4.4.6 NDDS - Network Data Distribution System 24

x DRDC Suffield TR 2004-287

4.4.7 MPI - Message Passing Interface 24

4.4.8 CORBA - Common Object Resource Broker Architecture . . . 24

4.4.9 IPC - Inter-Process Communications 25

4.4.10 ACE - Adaptive Communications Environment 25

4.4.11 Discussion . 26

4.4.12 Conclusions . 27

4.5 Frameworks . 28

4.5.1 Introduction . 28

4.5.2 Background . 28

4.5.3 OCP - Open Control Platform 29

4.5.4 MARIE - Mobile and Autonomous Robotics Integration
Environment . 29

4.5.5 CARMEN - The Carnegie Mellon Navigation Toolkit 30

4.5.6 Orca . 30

4.5.7 MIRO . 31

4.5.8 Discussion . 32

4.5.9 Conclusions . 33

4.6 Simulation Environments . 33

4.6.1 Introduction . 33

4.6.2 Background . 33

4.6.3 Unmanned Ground Vehicles 35

4.6.3.1 CARMEN . 35

4.6.3.2 MobotSim . 35

4.6.3.3 EasyBot . 36

4.6.3.4 Webots . 36

4.6.3.5 Player/Stage/Gazebo 36

DRDC Suffield TR 2004-287 xi

4.6.3.6 Vortex . 37

4.6.4 Unmanned Air Vehicles . 37

4.6.4.1 Matlab/Simulink 38

4.6.4.2 RT-LAB UAV Engineering Simulator 39

4.6.4.3 MUSE . 39

4.6.4.4 CAE STRIVE . 39

4.6.5 Unmanned Underwater Vehicles 40

4.6.5.1 CADCON . 40

4.6.5.2 DeepC System Simulator 40

4.6.6 Discussion . 40

4.6.7 Conclusions . 41

4.7 Experiences . 41

4.7.1 Introduction . 41

4.7.2 Background . 42

4.7.2.1 Carmen . 42

4.7.2.2 Player/Stage . 43

4.7.2.3 Miro . 44

4.7.3 Discussion . 46

4.7.4 Conclusions . 48

4.8 Conclusions . 49

5. System Integration . 49

5.1 Introduction . 49

5.2 CORBA Integration . 50

5.2.1 CORBA Naming Service . 50

5.3 Miro Integration . 51

xii DRDC Suffield TR 2004-287

5.3.1 System Initialization . 51

5.3.2 Current Services . 52

5.3.3 Future Services . 53

5.4 Simulation Integration . 54

5.4.1 TAO Centric . 54

5.4.1.1 Data Playback . 54

5.4.1.2 Simulated Environment 54

5.4.2 Player Centric . 56

5.4.3 Hybrid . 57

5.4.4 Discussion . 57

5.4.5 Conclusions . 59

5.5 Conclusions . 59

6. Conclusions . 60

References . 62

Annex . 70

DRDC Suffield TR 2004-287 xiii

List of figures

Figure 1. The ALLIANCE Architecture . 4

Figure 2. The LAYERED multi-vehicle architecture [96]. 5

Figure 3. The CHARON architecture [37]. a) Agent hierarchy diagram. b) Robot-group
agent. c) A robot agent consists of estimator, control and hardware interface agents.
d) Robot modes within the Controller Top mode. 6

Figure 4. The CAMPOUT architecture [51]. 7

Figure 5. Carnegie Mellon’s Task Control Architecture for the Ambler hexapod. Note
the centralized planner and distributed reactive controller 13

Figure 6. Carnegie Mellon’s Distributed Architecture for Mobile Navigation for the
NAVLAB series of robots. Each behaviour votes on every possible command (e.g.
steering radii) and all votes are processed within the arbiter. 13

Figure 7. A subsumption network. Perception (P) drives augmented nite state
machines (M\#) to output messages. Suppression nodes substitute horizontal line
messages with vertical (tap) messages. Similarly Inhibition nodes disable line
messages if a tap message is received. 15

Figure 8. A SAN network example. Note the interconnections sensor (S), hidden (H)
nodes and Actuator (A) nodes. Each node has the structure expanded at right. The
hidden nodes act as an interactuator information mechanism. 16

Figure 9. Carmen System Architecture. 42

Figure 10. Simulations in the Player/Stage Environment 44

Figure 11. Player Software for Segway RMP Trials . 44

Figure 12. Robot Control in Segway RMP Trials . 45

Figure 13. Data o w for a Miro service . 46

Figure 14. CORBA Networking . 50

Figure 15. CORBA Name Service . 51

Figure 16. TAO Centric using Stage and Gazebo . 55

Figure 17. TAO Centric using only Gazebo . 56

Figure 18. Player Centric Integration Plan . 57

xiv DRDC Suffield TR 2004-287

Figure 19. Hybrid Integration . 58

List of tables

Table 1. Data Flow Patterns . 21

Table 2. Middleware . 22

DRDC Suffield TR 2004-287 xv

This page intentionally left blank.

xvi DRDC Suffield TR 2004-287

1. Introduction

Unmanned Ground Vehicle (UGV’s) Research and Development within the
Autonomous Land Systems (ALS) project will assist the Canadian Forces in fulfilling
their future mandate. The ALS project derives its focus from the Autonomous
Intelligent Systems (AIS) activity outlined by the DRDC Technology Investment
Strategy (TIS). The TIS defines Autonomous Intelligent Systems as [54]

“...automated or robotic systems that operate and interact in the complex
unstructured environments of the future battlespace”

Automated or robotic systems are subdivided into five classes of Unmanned Vehicles
(UV):

1. Unmanned Air Vehicles (UAV): fixed or rotor wing aircraft.

2. Unmanned Ground Vehicle (UGV): typically tracked, wheeled, legged ground
vehicles.

3. Unattended Ground Sensors (UGS): stationary monitoring systems.

4. Unmanned Underwater Vehicles (UUV): untethered, propeller or buoyancy driven,
submarine vehicles.

5. Unmanned Surface Vehicles (USV): light propeller driven surface marine craft.

This TIS foresees that for these vehicle technologies

“cross-pollination of technology issues such as interoperability and
compatibility will be an advantage”[54].

Though the UGV environment is significantly more complex than the environments in
which other unmanned craft operate, airspace and open water posing few obstacles for
UAVs and UUVs, all unmanned systems share the fundamental problem of interpreting
and acting within their environment. Multi-vehicle operations, specifically
communication and coordination, add further dimension to the natural environment and
complexity to the unmanned system problem.

Effective multi-vehicle autonomy requires rich sensing and precise control, all residing
within a flexible extensible software and hardware architecture. As understanding of
autonomous perception and control improves, hardware and software will certainly
grow and change with the addition, alteration, and removal of systems as technology
evolves. This simple engineering constraint of “flexibility” demands that the vehicle
architecture, the software and the hardware must be designed for modularity,

DRDC Suffield TR 2004-287 1

portability, and maintainability. In short, the architecture design must be largely
immune to structural changes , i.e. a small change to hardware and software must not
induce substantial re-engineering .

This document explores the depths of the multi-vehicle architecture problem using the
past experience of other investigators, the apparent technological evolution of both
hardware and software, and the demands of the future CF environment. Considerable
research within real and simulated systems has revealed fundamental approaches to
multi-vehicle cooperation and coordination, single vehicle autonomous control, and the
underlying infrastructure to make these systems possible. The military and industry
have produced internet infrastructures that hold promise for future vehicle and
multi-vehicle systems, while posing additional engineering design and development
problems. Therefore, this document reviews multi-vehicle coordination, single vehicle
control, vehicle software infrastructures, and simulation systems, each a critical
element in modern multi-vehicle research.

2. Multi-Robot Architectures

2.1 Introduction

The “ability to learn, adapt and share information between platforms ... to achieve
collective intelligence” succinctly defines the necessary capabilities for effective
multi-vehicle/multi-agent systems.

A multi-vehicle system must exhibit cooperation amongst its agents in order for any
degree of effectiveness to be realized. Cooperation can come in many forms and
whether it is stigmergic or explicit, simple or complicated, cooperative behaviours must
be inherent to the multi-vehicle system. Cooperative behaviour is a subclass of
collective behaviour characterised by cooperation or is a system that, through some
underlying mechanism of cooperation, increases the total utility of the system [23].

Collective intelligence or collective behaviour is a layer above cooperative behaviour.
Collective intelligence can be thought of as that which overcomes "groupthink" and
individual cognitive bias in order to allow a relatively large number of agents to
cooperate in one process - leading to reliable action. In this context, it refers to a very
rigorous consensus decision making process[42]. The central issue in multi-vehicle
control, particularly in the military context is coordination and while multi-vehicle
team activity can be orchestrated through a central multi-vehicle controller given high
bandwidth and reliable communications, coordination becomes either fragile or simply
impractical with more realistic assumptions of intermittent or low bandwidth
communication.

In the following sections, we will detail a non-exhaustive review of several
multi-vehicle system architectures, control strategies and communication efforts. We
will then discuss various methods used in multi-vehicle systems, making loose

2 DRDC Suffield TR 2004-287

recommendations for a system supporting distributed intelligence.

2.2 Background

Almost all research done in multi-vehicle systems has been done since the early 1990’s.
There are of course the notable exceptions [107, 106], but the multi-vehicle research
work today seems to stem off of the seminal multi-vehicle works done in the early
1990’s and the behavior-based robotics work done in the middle 1980’s by Braitenburg
[12], Brooks [19] and Arkin [3].

2.2.1 Seminal Research

Several different task domains have been used to demonstrate multi-vehicle
systems. Some of the first research in multi-robot systems came in the
foraging/sorting area by Parker [77] and Beckers [9] and was likely fueled by
the bio-inspirations provided by Deneubourg [30]. Other tasks such as
multi-vehicle communication [7, 67, 29, 34, 104], cooperative transport
[71, 65, 64, 68, 101], landmine detection [44, 40], collective building
[109, 76, 75], traffic control [23], robot formation [84, 99, 8, 41], collective
mining [88] and collective exploration [5] have been researched. Many more
surveys on multi-vehicle research have been done and are mentioned here
[32, 23, 79, 105]. These systems all used various different architectures and
control strategies and in the next two sections we’ll discuss these and give a
few examples.

2.2.2 System Architectures

In robotic systems there are three basic system architectures. Deliberative
systems follow the sense-model-plan-act method and are based mainly on
planning; reactive systems follow the behaviour-based approach and have a
tight coupling between the systems sensors and actuators; hybrid systems
include a mixture of the two. A more detailed discussion about architectures
is given in Section 3.. These basic architectures lay the foundation for more
complex architectures.

From the three basic architectures, researchers have started to develop more
complex architectures that have the ability to negotiate the issues of
synchronization, cooperation, coordination, task allocation, communication,
etc. under a wide range of environmental conditions. At the very low level,
robots must be able to act quickly to dynamic changes in the environment and
perform reactive routines in order to accomplish tasks such as obstacle
avoidance. These robots must be able to do this while at an intermediate level
accomplishing longer term missions, such as route planning and world
mapping. Finally, at higher levels robots must be able to coordinate with each
other, performing asynchronous tasks like cooperative searchs or highly

DRDC Suffield TR 2004-287 3

Layer 0

Layer 1

Layer 2

Motivational
Behavior

Motivational
Behavior

Motivational
Behavior

Behavior
Set 0

Behavior
Set 1

Behavior
Set 2

Sensors

Actuators

Inter-Robot
Communi-

cation

cross-inhibition

The ALLIANCE Architecture

s

sss

s

Figure 1: The ALLIANCE Architecture

synchronized tasks like cooperative transportation. Any system architecture
that has multi-vehicle systems in mind must allow flexibility between the
various levels of the architecture as well as arbitration amongst the various
control strategies 2.2.3.

There are several examples of different multi-vehicle specific architectures
that have been created. Below we briefly describe four prominent
architectures:

• ALLIANCE: The ALLIANCE architecture by Parker [78] is a software
architecture that facilitates the fault tolerant cooperative control of teams
of heterogeneous mobile robots performing missions composed of loosely
coupled subtasks that may have ordering dependencies. ALLIANCE is a
fully distributed, behaviour-based architecture that incorporates the use of
mathematically-modeled motivations [78]. “The ALLIANCE
architecture, implemented on each robot in the cooperative team,
delineates several behavior sets, each of which correspond to some
high-level task-achieving function. The primary mechanism enabling a
robot to select a high-level function to activate is the motivational
behavior. [78].” A complete description can be found in [78]. Figure 1
shows a graphical representation of the ALLIANCE architecture1.

1Implemented on each robot in the cooperative team, delineates several behavior sets, each of which correspond
to some high-level task-achieving function. The primary mechanism enabling a robot to select a high-level function
to activate is the motivational behavior. The symbols that connect the output of each motivational behavior with
the output of its corresponding behavior set (vertical lines with short horizontal bars) indicate that a motivational
behavior either allows all or none of the outputs of its behavior set to pass through to the robot’s actuators. The
non-bold, single-bordered rectangles correspond to individual layers of competence that are always active.

4 DRDC Suffield TR 2004-287

planning

behavior

executive

planning

behavior

executive

Robot 2 Robot 3

. . .

. . .

. . .inputs

outputs

(PRL)

plans

Market

Economy

Skill
Manager

tasks

synch

planning

behavior

executive

Robot 1

synchronization/coordination

gr
an

ul
ar

ity

configuration status/data

status/data

plans

TDL

Figure 2: The LAYERED multi-vehicle architecture [96].

• LAYERED ARCHITECTURE: The Layered Architecture for
coordination of mobile robots by Simmons et al. [96] is an architecture
that enables multiple robots to explicitly coordinate actions at multiple
levels of abstraction. Their layered architecture has three layers than
enables robots to interact directly at the behavioural level, the executive
level and the planning level. This architecture ensures that at all levels the
robots utilize coordinated behaviours, coordinated task execution and
coordinated planning. Each robot essentially has these three layers and on
an individual robot the layers can interchange information while on a
robot-to-robot basis the synonymous layers (e.g. the executive layer) talk
to each other. Figure 2 shows a graphical representation of this layered
architecture.

• CHARON: The CHARON high-level language describes multi-agent
systems [37]. CHARON is a language for modular specification of
interacting hybrid systems based on the notions of agents and modes.
“For the hierarchical description of the system architecture, CHARON
provides the operations of instantiation, hiding, and parallel composition
on agents, which can be used to build a complex agent from other agents.
For the hierarchical description of the behaviour of an agent, CHARON
supports the operations of instantiation and nesting of modes [37].”
Figure 3 a, b, c, and d give four graphical representations of the
CHARON system.

• CAMPOUT: The CAMPOUT architecture, designed by Huntsberger et
al. [51], is an architecture that is able to autonomously adapt to the
uncertainties of a dynamic environment. “CAMPOUT is a distributed
control architecture based on a multi-agent behaviour-based methodology,
wherein higher-level functionality is composed by coordination of more
basic behaviours under the downward task decomposition of a
multi-agent planner. Basically CAMPOUT provides the infrastructure,

DRDC Suffield TR 2004-287 5

formation,

role[1…n],

obstacleDetected,

wallDetected

Coordination Agent

Robot_Group Agent

groupState

obstacleSensed[1...n],

wallSensed[1…n]

targetSensed[1…n]

controlEstimator[1...n]

formation, role[1...n],

obstacleDetected,

wallDetected

Robot_1

groupState

obstacleSensed[1...n],

targetSensed[1…n],

wallSensed[1...n]

controlEstimator[1…n]

Robot_2 Robot_n
. . .

a) b)

Frame_Grabber Agent

Estimator Agent

Motion_Controller Agent

Control Agent

Robot_k

o
b
st

ac
le

S
en

se
d
[k

]

wallSensed[k] controlEstimator[k] groupState formation role[k]

o
b
stacleD

etected
w

allD
etected

ta
rg

et
S

en
se

d
[k

]

Controller_Top

read discrete int role;

read discrete bool wallDetected, obstacleDetected;

Follower_Mode

Leader_Mode

role == lead role == follow

role == follow

c) d)

Figure 3: The CHARON architecture [37]. a) Agent hierarchy diagram. b) Robot-group agent. c) A robot agent

consists of estimator, control and hardware interface agents. d) Robot modes within the Controller Top mode.

tools and guidelines that consolidate a number of diverse techniques to
allow the efficient use and integration of these components for meaningful
interaction and operation [51].” CAMPOUT is comprised of five different
architectural mechanisms including, behaviour representation, behaviour
composition, behaviour coordination, group coordination and
communication behaviours. A schematic overview is shown in Figure 4.

• OTHER: The above architectures are but a few of the complex
architectures that have been developed strictly for multi-vehicle systems.
However there are many other architectures
[22, 24, 6, 73, 108, 89, 97, 72, 56, 110, 61, 53] that were not reviewed for
this document.

2.2.3 Control Strategies

In multi-vehicle systems there are two different high-level control strategies:
centralized and decentralized. Centralized systems have one machine, agent
or process that is in control of the entire system. This agent controls all of the
other agents in the system. Decentralized systems do not have a central agent
that monitors all the agents. There also exists hybrid strategies in which there
is a centralized planning system that overlooks the decentralized agents. One
can also imagine a centralized control system of centralized teams comprised
of decentralized agents.

6 DRDC Suffield TR 2004-287

Figure 4: The CAMPOUT architecture [51].

2.2.4 Communication

Communication in multi-vehicle systems has several meanings. In this section
we discuss how robots are going to communicate with each other? Other
communication issues are concerned with how different processes “talk” to
each other or how different modules on a robot share information with each
other. These important issues are discussed in Sections 4.4 and 4.5.

Centralized coordination, capable of optimal or near-optimal distribution of
unmanned forces, requires reliable and frequent feedback and control to
ensure predictable performance. Unfortunately, neither the rate nor quality of
communications can guarantee this performance on the battlefield or even in
urban settings. Autonomy can compensate for this deficit by inserting greater
intelligence into each unmanned system. This reduces the coordination
bandwidth and monitoring requirements but at the cost of optimality and
predictability. Research must seek out the minimum necessary level of
communication that achieves the maximum optimality or, perhaps more
realistically, predictability.

In multi-vehicle systems inter-robot communication can be either implicit
(stigmergic) or explicit i.e. the robots can either explicitly communicate with
each other or they can infer (stigmergic communication) what each other is
doing based on other robots actions or how the environment has been
changed. When considering explicit communications the major concern of the
system is what data should be sent and how should it be sent. In a
bandwidth-rich simulation environment living on a high-power CPU sending
large data packets packed with information might be acceptable, but in an
outdoor wireless environment this luxury may not be available. Instead, care
must be taken in data transmissions such that only useful information is sent
and that that information will be easily interpreted by its receivers. Robots in

DRDC Suffield TR 2004-287 7

an explicit-communication-poor environment need the ability to interpret the
environment and the robots in the environment in order to gain intelligence
and make smart decisions i.e. via stigmergic communication, the robot needs
the ability to gather information from the dynamic environment. Therefore a
need for both stigmergic and explicit communications exist. Stigmergic
communications are warranted such that all information about the world
doesn’t need to be communicated to a robot, nor will it always be available.
Also we don’t want a multi-vehicle system to come to a halt if there is a
temporary or even permanent loss in explicit communications. Finally, there
will always be a need for explicit communications for higher level
communications such as task allocation, task planning etc.

2.3 Discussion

This section has reviewed of the various systems, technologies and architecutres that
have been implemented as a result of research in the field of multi-vehicle control and
co-operation. Many systems have been developed for different reasons, whether it be
fault tolerance, layered systems, tight coupling or just simply coordination, and in the
future we plan to take the lessons learned from these systems and improve upon them.
One clear lesson learned is that if not properly constructed, multiple-robot systems may
actually increase the complexity of an automated solution rather than simplify it[78].

2.4 Recommendations/Conclusions

In many ways, the multi-vehicle environment is reminiscent of the single robot
architecture problem, but with the added complexity of intermittent, slow
communication, narrow and intermittent sensing, and a vastly more complex potential
for activity. The key difficulty of multi-vehicle autonomous control is achieving useful,
cooperative behaviour despite these significant problems. Based on our study it is
apparent that we should not be employing technologies that are at the extreme end of
their technology spectra. Instead, we should use a balanced approach that selects the
best ideas, disregards the impractical and implements a function system. Thus, we
don’t want to use a fully reactive system, nor do we want to use a fully deliberative
system. The same can be said for the architecture and communication strategies. As we
move towards distributed intelligence we envision a layered deliberative/reactive
system with stigmergic and explicit communications. There are many ideas to research
in these areas, especially the higher level arbitration areas regarding task allocation,
tactics planning etc. However, the first task at hand is the development of an
architecture for autonomy for individual robots. This architecture must be portable,
scalable and extensible so that it also meets the requirements of multi-vehicle systems.

8 DRDC Suffield TR 2004-287

3. Control Architectures

3.1 Introduction

Robots are dynamic systems, rooted in the physical phenomena of motion, friction, and
impact. By applying forces through motors, drive trains and surface features, robots
interact with a complex changing environment to achieve prescribed objectives. Less
apparent, though, are the internal dynamics of the robot’s control logic.

A robot is a device that interacts with the environment in a predictable and desirable
way, but only after the observable world is translated into useful action through sensors,
logic, and controllers. In effect, a set of ’artificial’ constraints on the robot’s
mechanical system relate sensing to control through a thread2, or series of processes.

DRDC’s architecture for autonomy must accommodate all types of control threads,
from teleoperation to autonomous deliberative control. We must assume that there is no
’silver bullet’ to autonomous control and that at some point, all control methods will be
found wanting.

As discussed earlier, the primary job of a robot controller is to artificially constrain a
robot to perform some desirable task. The chain of events that link sensing to action is
formally known as a control loop 3 within a block diagram in control theory. Practically
speaking, a control thread is composed of a series of steps or, in control theoretic terms,
blocks that traverse the gap between sensing and control. In increasing level of
abstraction, these blocks are usually embodied within4:

Transfer-Functions: electromechanical transfer functions, or mathematical
descriptions of the transformation of an input variable to an output variable.

Firmware: the low level software embedded into a digital controller that implements
control functions.

Functions: one or more program procedures (or methods) compiled into a library,

Hierarchies: one or more class hierarchies, again compiled into a library,

Processes: complete processes that manage the safe initialization, maintenance, and
control of an automatic system.

Consider the following approach to the problem. Suppose a robot consists of a group of
sensors, s , n actuators, and some goal description (or set-point), r. Then the basic
problem is to convert sensing, goals, and actuation into action or, in mathematical form:

2The term thread is rarely used in this context, but effectively describes the sometimes tortuous connection
between sensing and control that form some SMPA cycles.

3i.e. a control uses sensor feedback to regulate a controlled variable – forming a loop
4All of these methods will be encountered within the evolving architecture discussed here.

DRDC Suffield TR 2004-287 9

ui = hi(s,ri)

where i : 1...n, ui is the control effort (say a voltage) to an actuator from the ith

controller, hi. In short, somehow, control effort is a function of a goal statement and
observed state. Since the state space of the ’world’ is very large (even infinite), we must
limit the ’observed state’ to a substantially smaller subspace of the observable world.
Further, for ui to be controllable, the controlled variable must be derivable from the
observed state (conditions called observability and controllability). To be reachable, a
goal must be described through observable and controllable variables. For example:

A vehicle camera must be pitched +20 degrees in World Coordinates.

Observability: The vehicle must measure elevation and azimuth angles of the
camera in world coordinates. Note that local camera pan/tilt angles are
insufficient and require the vehicle pose to produce the correct pan/tilt angles.

Controllability: The vehicle must pan and tilt the camera in world coordinates
either through pan/tilt motors or vehicle motion. To command pan/tilt motors
to the right positions, a geometric vehicle model is combined with simple
camera motor models, possibly modeling only a gear train or pulse/ angle
transformation.

Models can be built from device parameters (control variables, device geometry, etc.)
to form a large device model. Hence commanding the device into a new state involves
the reversal or ’inversion’ of this model.5 Clearly, the linearity, size, and fidelity of the
model will greatly influence the computational complexity and ultimately the thread’s
control rate. The recurring issue in robot design the determination of quality and
necessity of modeling.

3.2 Background

Early AI [17] broke ’intelligence’ into four distinct problems: sensing, modeling,
planning, and action (SMPA). Modeling and planning, considered the most difficult,
were often implemented as monolithic processes supported by the relatively simple
sensing and action modules. Research focused on symbolic manipulation of the
environment and task-level robot programming techniques 6. These deliberative
architectures assumed the environment was completely known to guarantee the robot’s
behavior.

5In vehicles, this model can be as simple as a basic geometric model (e.g. a steering model) to a sophisti-
cated mixture of hyper-spatial (greater than 6dof) geometry of vehicle, terrain, communications environment, etc –
whatever can be measured.

6Stanford Research Institute’s ‘Shakey’ and STRIPS are examples of task level programming in which logic and
planning were of primary interest.

10 DRDC Suffield TR 2004-287

Of course unstructured environments (UE) are intrinsically unpredictable, making
deliberative SMPA threads appear brittle and cumbersome. With the escalation in
complexity, UEs either break or slow the MP steps. Without appropriate design,
simplified Model-Planners (MPs) face input starvation, lacking sufficient quality or
quantity of information. Conversely detailed MPs risk becoming compute bound
(lacking computing cycles), a characteristic of the Frame Problem. Not surprisingly,
purely deliberative systems are often large with relatively slow control rates and are
often expensive.

Robotics research diverged from a single deliberative SMPA thread into reactive
systems, in the process reducing reliance on the modelling and planning steps (artificial
intelligence[70], mobile robotics [15, 14, 16, 17, 18, 26], and high performance
manipulation [60, 93, 25]). While capable of robust behavior in high complexity UEs,
these systems shared a lack of predictability and provided few useful applications.

Most systems now exploit hybrid strategies composed of both deliberative and reactive
control strategies, implemented as a network of complementary control threads.

Robot architecture design has evolved from a philosophical programming problem to a
pragmatic systems engineering problem involving multiple computing elements of
varying scales, protocols, and capabilities networked into a functional whole.

A practical robot architecture must satisfy the peculiar demands of both hybrid and
reactive control methods. Pure deliberative systems are largely linear, moving step by
step through the SMPA cycle while reactive systems tend to be composed of multiple,
simple MP threads7, initially drawing from a common sensor pool and finally
committing multiple results to an arbitrator prior to Action. A quick review of some
examples is instructive:

3.2.1 Raibert’s Hopping Robot

Raibert [83] and others [82] have designed robots to explore hopping and
leaping dynamics. Raibert’s system was controlled through a sequencer, or
finite state machine, driven by data streams from pressure, inclinometer, angle
and position sensors. By observing incoming data streams the sequencer
could coordinate height, velocity, and attitude controllers with the timing of
the machine’s support and flight phases.

Raibert’s hopping robot employed a double acting pneumatic cylinder
connected to a pair of pneumatic ‘hip’ actuator joints, and the entire leg/hip
assembly was attached to a large inertia balance beam. By tethering the
balance beam to rigid aluminum boom, the robot was constrained to hop
within a spherical surface. Two controllers cooperated in the motion of the
robot. Each phase of the hopping sequence was triggered by specific sensor

7or µplan , a scripted action triggered by sensing.

DRDC Suffield TR 2004-287 11

thresholds determined through experimentation and analysis. The modeling
portion of each phase was limited to estimating the dynamics of the hopping
frame, while the planning portion used the dynamic model to plan an
angle/thrust response.

Raibert’s robot is significant for its use of a combination of dynamic analysis,
control, and finite state strategy sequencing rather than an SMPA like
planning of the robots running stride. Quoting from [83]:

“The back and forth motions were not explicitly programmed, but
resulted from interactions between the velocity controller that
operated during flight and the attitude controller that operated during
stance.”

3.2.2 Andersson’s Ping-Pong Player

Anderssons Ping Pong player [2] used an ‘expert controller’, an hybrid
between an expert system and a controller. Andersson employed a figure of
merit system to trigger activity within the expert controller. Through an
analysis of the ping pong ball dynamics, Andersson identified a set of ‘free
variables’ upon which the ping pong task was dependent including: paddle
orientation, ball velocity, manipulator settle time and others. In each control
cycle these values would be run, in parallel, through a set of simple models,
each generating a figure of merit. The model returning the highest figure of
merit would be executed as the next task in the system. In effect, Andersson
condensed the model-plan portion of the cycle into a set of parallel processes
that simultaneously examined the free variable stream and developed
correspondence measures.

3.2.3 Task Control Architecture (TCA)

The Task Control Architecture, shown in Figure 5 is a product of CMU’s
Robotic Institute, was one of the first architectures to try to unite deliberative
and reactive systems.

The CMU Robotic Institute’s Task Control Architecture (TCA,) in figure
5was one of the first to unite deliberative and reactive systems. TCA acts as a
planner/overseer on top of task specific reactive systems. Perhaps the most
well known implementation of TCA is on the Ambler hexapod. After initially
using an SMPA cycle for Carnegie Mellon’s six legged robot, ‘Ambler’s’ Task
Control Architecture (TCA)[94, 95] was modified into an asynchronous
reactive layer combined with traditional AI modeling and planning elements.

12 DRDC Suffield TR 2004-287

Gait Planner

Footfall
Planner

Leg Recovery
Planner

Error
Recovery
Planner

User Interface

Real Time
controller

Laser Scanner

Local Terrain
Mapper

Image Queue
Manager

Scanner
InterfaceCentral

Control

Ambler

Message
Routing
Table

Resource
Schedules

Task
Trees

Figure 5: Carnegie Mellon’s Task Control Architecture for the Ambler hexapod. Note the centralized planner and

distributed reactive controller

Mode
Manager

DAMN
Arbiter

vehicle
controller

Avoid
Obstacles

Follow Road

Seek Goal

Maintain
Heading

Avoid Tip Over

weights commands

vote vote vote

vote vote

Figure 6: Carnegie Mellon’s Distributed Architecture for Mobile Navigation for the NAVLAB series of robots. Each

behaviour votes on every possible command (e.g. steering radii) and all votes are processed within the arbiter.

3.2.4 Distributed Architecture for Mobile Navigation (DAMN)

The DAMN architecture, depicted in Figure 6, also developed at CMU, also
sought to integrate deliberative planning with reactive control. In DAMN, a
discrete set of control actions on a group of actuators (e.g. pan/tilt camera,
vehicle steering motors, engine speed) forms a command space in which
multiple modules concurrently share robot control. By voting for or against
alternatives in the command space, each module contributes to the control
commands for the robot. DAMN employs an arbitrator for the resolution of
the voting process on each device. In the case of an UGV project command
space could be: a turn arbiter, a speed arbiter, and a ‘field of regard’ arbiter. To
explain the arbitration process the turn arbitration procedure will be described:

Each behaviour votes between −1 and +1 on every member of a discretized
set of radii, R0i. This means that each behaviour’s vote is actually a
distribution over all the possible steering radii. The arbiter collects vote

DRDC Suffield TR 2004-287 13

distributions from all participating behaviours, performs a gaussian smoothing
on each, followed by a ‘normalized weighted sum’ for each of the i radii
candidates:

vi =

∑
j w jv

j
i∑

j w j
(1)

where wjis a behaviour weight and vi is the vote for the j th behaviour. The
radius with the highest vote v = max(vi), is sent to the controller. ‘Field of
regard’ and velocity arbiters perform similar smoothing and selection
operations. This approach allows for multiple modules operating at multiple
frequencies to vote on various command spaces. DAMN runs on a number of
platforms [58, 86, 85]. Rosenblatt explored a number of alternatives to the
turn arbiter including more elaborate path and path with prediction arbiters
that exploited progressively more detailed vehicle models.

3.2.5 Motor Schemas

Motor schemas [3, 4] are small processes that correspond to primitive
behaviours that, when combined with other motor schemas, yield more
complex behaviour. Arkin employed two kinds of schema, perceptual schema,
that observed and represented the environment through sensing and potential
field models respectively and motor schema that devised responses to classes
of events. A central MOVE-TO-GOAL or MOVE-AHEAD schema sums the
responses and commands the robot motors.

Thus if a FIND-OBSTACLE schema detected an obstacle, an AVOID-OBSTACLE

schema was instantiated that produced a velocity vector based upon a
repellent potential field around the obstacle (similar to Khatib [59]). By
summing the output velocity vectors from a collection of such schemas, a
MOVE-ROBOT could navigate through the environment. Motor schemas
continue to this day within the MissionLab software architecture (founded on
IPT discussed in Section 4.4.3)

3.2.6 Subsumption Architecture

Physically, subsumption is a hierarchical network of simple sensors,
controllers, and actuators that can be embedded into relatively small robots. In
Ferrell’s 14 inch 3 kilogram hexapod, 19 degrees of freedom were controlled
through 100 sensors, including leg mounted foil force sensors, joint angle and
velocity sensors, foot contact sensors, and an inclinometer. Applications
include aircraft flight and landing systems [49], heterarchical subsumption
(Connell’s Herbert[26]), and hexapod motion (Ferrell’s Hannibal[36]).

14 DRDC Suffield TR 2004-287

M1

M2

M3

S

S

P1

P4

P2

P3

P2
M4

M5 I

S

P3

S

I
Inhibition: ta
block line m

Suppressio
replaces lin

M# Augmented

P4

line

tap

S
line

tap

Figure 7: A subsumption network. Perception (P) drives augmented finite state machines (M\#) to output messages.

Suppression nodes substitute horizontal line messages with vertical (tap) messages. Similarly Inhibition nodes

disable line messages if a tap message is received.

Mataric’s [69] Nerds showed that behaviour arbitration could be learned
through repeated trials.

Each subsumption network node is an augmented finite state machine
(AFSM), consisting of registers, a combinatorial network, an alarm clock, a
regular finite state machine, and an output. Sensors are connected to specific
registers while actuators receive commands from the output of specific
AFSMs. A message arriving at a register or an expired timer can trigger the
AFSM into one of three states: wait, branch, or combine register contents.
Results of combinatorial operations may be sent to an input register or an
output port. Since each AFSM uses an internal clock, output messages can
decay over time.

AFSMs can inhibit inputs and suppress outputs of other AFSMs through
inhibition and suppression ‘side taps’ placed on input or output connections in
the network. Inhibition side taps prevent transmission of original messages
along an input connection if an inhibition message has been received from an
AFSM. When a suppression message is sent to a suppression side tap from an
AFSM, the original output message is substituted by messages from the
AFSM.

Inhibition and suppression side taps encourage layered subsumption (as in
Figure 7) in which basic behaviours are embodied within a fundamental layer
of AFSMs. Through judicious use of side taps, additional behaviours can be
built over the basic set (e.g. ‘leg down’,‘walk’, ‘prowl’). Mataric developed a
set qualitative criteria to aid in the selection of basic behaviours. Each
behaviour should be: Simple, Local through local rules and sensors, Correct
by provably attaining the desired objective, Stable through insensitivity to
perturbations, Repeatable, Robust by tolerating bounded sensor or actuator
error, and Scalable by scaling well with group size.

DRDC Suffield TR 2004-287 15

w

w

w

Σ ∫k1

k2

H

H

S

S

A

Figure 8: A SAN network example. Note the interconnections sensor (S), hidden (H) nodes and Actuator (A) nodes.

Each node has the structure expanded at right. The hidden nodes act as an interactuator information mechanism.

3.2.7 Reynold’s Boids

The realistic animation of large collections of entities e.g. crowds of people,
schools of fish, etc. becomes time consuming and inflexible if the trajectories
of each entity are specified a priori. In a novel solution, Reynolds [84]
employed a set of three behaviours: collision avoidance, velocity matching,
and flock centering to model formation flying within every bird-like graphical
construct, bird-oids or boids.Each behaviour generated an acceleration vector
and was placed in a priority list.

As each behaviour contributed a desired acceleration to the arbitrator, the
arbitrator would accumulate both the acceleration vectors and the magnitudes
of each output behaviour over time in order of priority. When the sum of the
accumulated magnitudes exceeded a fixed acceleration value, the acceleration
vector components would be apportioned to each behaviour in priority. Under
normal flight conditions in which each behaviour is of approximately equal
priority, this is equivalent to vector averaging. However, if one behaviour
experiences an emergency and issues large magnitude vectors, this method
effectively suppresses lower priority requests. Similar strategies were used by
Terzopoulos [100] to produce realistic behaviour within more sophisticated
animated fish.

3.2.8 Sensor-Actuator Networks

The realistic animation of complex running or galloping entities, like the real
world equivalent, is difficult to coordinate and control. Van De Panne and
Fiume tackled this problem through the creation of Sensor Actuator Networks
(SAN) [103]. Given a mechanical configuration and the location of binary
sensors and PD actuators on the mechanism, a generate-and-test evolution
method modulates weights connecting sensor nodes, hidden nodes, and
actuator nodes of the network. In a complex information exchange, all sensor
nodes are linked to all hidden and actuator nodes, all hidden nodes to one

16 DRDC Suffield TR 2004-287

another and actuator nodes, and all actuators nodes to all sensors and hidden
nodes. Each link is unidirectional and weighted. Within each node, a
weighted sum is performed on all connections, thresholded, integrated, and
filtered through a simple hysteresis function. The SAN structure is depicted in
figure 8.

3.3 Discussion

Some lessons follow from the foregoing review of architectures

3.3.1 Redundant Control

The persistence and quality of control threads cannot be guaranteed under all
circumstances. Therefore:

A single control thread will not be sufficient for all circumstances.

3.3.2 Control Rate Spectrum

Years of trial and error implies that autonomous vehicle’s control system must
contain high rate controls focused on vehicle survivability over short time
horizons. These lightweight processes have little or no explicit
model/planning steps but little flexibility. Conversely, more deliberative
threads are often model dependent and slower.

One or more control threads will run within a spectrum of control rates (e.g.
from 1000 to .1Hz) .

It is important to recognize that while a single control thread may have one
particularly slow process, there is no necessity for the thread to adhere to that
control rate. This is particularly true if a module works on the output of
multiple modules (e.g. a data fusion engine that draws from a stereo camera
such as a Digiclops at 30Hz and a nodding laser rangefinder such as a SICK at
0.5Hz need not function at only 0.5 Hz).

3.3.3 Model based Control

In some cases model based control is crucial and, in others, unnecessary,
depending on the task. Some tasks, such as configuration for high mobility
vehicles, may require either a simple geometric model or more descriptive
force and torque models to ensure adequate control. Ironically, as
performance requirements (such as velocity and acceleration) increase,
sensing becomes harder and the necessity for dynamic models becomes
unavoidable for stable control. Short range obstacle avoidance may benefit

DRDC Suffield TR 2004-287 17

from a modest model/path planning steps, while long range planning is utterly
dependent on both models and plans.

One or more control threads may contain modeling and planning steps.

3.3.4 Distributed Processing

For many processes or even whole threads, executing remotely on a dedicated
computing device may be the only means of ensuring sufficient resources to
perform at the necessary control rate. At the very least, many modules will
draw on remote resources such as SICK or vehicle control components over a
network (TCP/IP, firewire, or CANbus). Therefore:

One or more control threads may contain modules operating on remote
devices.

3.3.5 Arbitration

Experience has shown that successful control architectures exploit multiple
control strategies, breaking a complex control problem into a set of more
tractable parts. These control algorithms often operate simultaneously over a
network-like architecture. Obviously only one strategy can be applied to the
available actuators at one time, forcing a decision or arbitration process to
resolve conflicts between threads.

Multiple control threads will be combined through arbitration into
’composite’ outputs.

With these conclusions in mind, and the previous discussions of software
modularity and integration issues, we are now in a position to discuss
implementation issues surrounding DRDC’s architecture for autonomy.

3.4 Recommendations/Conclusions

The steps of control, philosophy and some seminal robot controllers were reviewed and
a number of key conclusions discussed. Of these the most important is the necessity of
Redundant Control and Arbitration. How should this be realized? While the foregoing
implies a parallel computing architecture, it is equally necessary for separate control
threads to share sensing resources.

Over the last decade, the tools that support network based robot control have matured
to the point that industrial interprocess communications now form a reliable, high
speed mechanism for building distributed controls. The introduction of internet-based
industrial networks and the desire to track and mine industrial process performance
history has led to the development of net-based real-time (or near real-time) network

18 DRDC Suffield TR 2004-287

control technology. Clearly, both multi-vehicle and single vehicle control will benefit
from these technologies if care is taken in their adoption.

It is difficult to select a ’winning’ arbitration architecture since few are directly
comparable. The most widely tested systems are the pure potential field variants (such
as Motor Schema), while the most severely tested is arguably the DAMN architecture.
The simplest arbitration strategies tend to resemble Schema-type approaches, using
nonlinear gains on simple sensor returns to drive action selection. As these systems
evolve they approach the complexity of the DAMN system. The DAMN approach is
appealing since it clearly maps the observed world onto the vehicle’s actuator space,
providing a human readable condensation of all control thread input. Therefore, the
current bias of the program is to follow a DAMN-like philosophy in vehicle control.

4. Infrastructure Services

4.1 Introduction

Two distinct approaches for developing autonomous vehicles have been developed. The
first approach specifies a reference architecture which is an all encompassing definition
of information and data flows within the vehicle. Examples of global architectures
include NASREM[1], TCA[95], Dervish[81], CLARAty[53], RAP[38], Xavier[62],
Saphira[63] and 3T[11].

The central thesis of the second approach is the field of robotics is so new and young
that it is not feasible to define a fixed reference architecture. Instead, it ascribes to an
ideology which believes that the architecture for a robot should only provide the
infrastructure services. These services simplify and enable the integration of the
various components required by an autonomous robot[48]. IPC[94], IPT[46],
NML[55], Berra[74], Marie[27], Carmen[87], OCP[111], Miro[102] and Orca[13] are
examples of infrastructure services.

4.2 Background

Under the AIS activity, initiatives will research and develop algorithms that will enable
the vehicles to operate in an autonomous manner. Given the degree of research that
must be conducted to create “intelligence”, these algorithms will undergo a continuous
cycle of change. A key component to the success of research in this area will be the
ability to manage this changing landscape in an efficient manner that allows researchers
to easily investigate new avenues of research. The complexity of autonomous vehicles
can be minimized through a component based philosophy. Szyperski defines
components as “binary units of independent production, acquisition, and deployment
that interact to form a functioning system”[98]. Thus a component is an independent
entity that is capable of executing without requiring the services of a complete system
and is often considered to be a separate process that runs under its own workspace.
Through the use of components a system can be decoupled into its constituent

DRDC Suffield TR 2004-287 19

elements. This decoupling results in portable and modular software that exhibits
“plug-and-play” characteristics. A component based framework also supports an
approach to code development that is both extensible and scalable. Extensibility means
that it is simple to integrate new software and hardware into an existing system, while a
scalable system allows for the easy distribution of the processing over several hosts.

Components share information via defined protocols and interfaces. This adherence to
protocols and interfaces allows components to be assembled together to create a
functional system.The act of communications between components is usually referred
to as “Inter-Process Communications” or IPC. A specific IPC implementation is called
middleware. A middleware implementation defines a library of standard protocols and
interfaces that are available for sending information from one component to another. A
methodology for using middleware to implement an unmanned vehicle is called a
framework. An overview of middleware for IPC is given in Section 4.4 and Section 4.5
details various robotic framework implementations.

Modular software simplifies the process of porting an algorithm between the various
UV platforms. Modularity also assists the process of replacing an existing algorithm
with a new or different algorithm. AIS research will encompass the work of many
researchers, with most researchers concentrating on a specific area of research such a
stereo vision, map creation, etc. These researchers do not need to know the details of a
given vehicle implementation nor are they interested in these specific details. Modular
software defines a clear interface between each component in an UV, thus minimising
the effort required to integrate new components.

4.3 Data Flow Patterns

An unmanned vehicle is a complex system that contains components which must
exchange information and data. The manner in which this information and data is
shared is characterised by Data Flow Patterns. Researchers have identified numerous
data flow patterns that are commonly used in robotic applications. These patterns
simplify the development of modular software by facilitating communications between
components. Gowdy[47] identifies four common patterns:

• query/response;

• broadcast

• collection

• information synthesis

OROCOS@FAW[90] identified a similar set of data flow patterns:

• send

• query

20 DRDC Suffield TR 2004-287

• auto-update

• event

• configuration

Even though there are numerous ideas on which data flow patterns best serve robotic
applications, data flow patterns can be roughly classified into only two large groups, the
message based paradigm and the information based paradigm. Table 1 shows how the
data flow patterns listed above can be classified into these groups.

Message Based Information Based

Query/Response Broadcast
Send Collection
Query Information Synthesis

Configuration Auto-update
Event

Table 1: Data Flow Patterns

4.3.1 Message Based Communications

Under the message based paradigm data is sent directly from one module to
another. This message consists of a header identifying the message type and
the data of the message. The message based paradigm is well suited for
applications where the modules require a high throughput rate. With this
paradigm the two components directly exchange data and there is no need for
an intermediary.

4.3.2 Information Based Communications

For the information based paradigm there is no direct interaction between
modules. A module produces information anonymously and makes this data
available using a mechanism such as a shared buffer or event queue from
which the consumer(s) of the information anonymously acquire this
information. This paradigm usually requires the presence of an intermediary
who facilitates the distribution of the information.

4.3.3 Conclusions

Research in the field of autonomous vehicles requires infrastructure services
that encourage the development of modular software using a component based
approach. Infrastructure services that support a wide range of Data Flow
Patterns are preferable since they allow for an implementation that is best
suited for the given circumstances. The following sections describe how Data

DRDC Suffield TR 2004-287 21

Middleware Usage Data Flow Pattern
IPT Unmanned Ground Vehicles Message based
RTC Unmanned Ground Vehicles Message based
NML NASREM partner, robotics Information based
NDDS Laboratory tool Information based
MPI Parallel Computing Messages contain only data

CORBA Object Oriented Communications Standard Message and Information based
IPC Robotics Message based
ACE Concurrent Communications Message and Information based

Table 2: Middleware

Flow Patterns influence the development of frameworks and how Data Flow
Patterns are influenced and implemented by communications middleware.

4.4 Communications Middleware
4.4.1 Introduction

Toolkits are available that provide the infrastructure for writing modular and
portable software code. These toolkits, usually referred to as middleware,
offer varying degrees of capabilities and are amenable to a variety of
autonomy architectures. This section reviews a variety of middleware toolkits
and discusses their application to unmanned vehicle architectures.

4.4.2 Background

Middleware enables the development of modular software by implementing a
standard communications protocol that allows for information to be
exchanged between components. These processes can be running on the same
processor or on a separate processor. This class of middleware often does not
directly target UGVs, UAVs and UUVs, but is generic in nature. Some
middleware offerings implement additional functionality that extend the
capabilities of the toolkit and further increase the modularity of the software
by allowing the software to become operating system independent.

The following sections give a more detailed overview of the middleware
packages listed in Table 2 and discusses some of their relative advantages and
disadvantages. Verret and Broten conducted a survey of IPC toolkit for
possible use by the DRDC unmanned vehicle program (to be published).
Another good discussion of the relative merits and limitations of selected
middleware packages was conducted by Jay Gowdy[47].

22 DRDC Suffield TR 2004-287

4.4.3 IPT - Interprocess Communications Toolkit

IPT middleware uses a message based paradigm to allow processes to
exchange data[46]. A message is comprised of two parts, the message type
and data. Messages are asynchronous in nature and are well suited for event
driven processes. IPT implements a server that acts as an agent which allows
processes to register services and search for registered services. Hence, a
process consuming data or events can locate the process creating the data or
events via a simple name search. Once the processes have been located they
can then use point-to-point communications to exchange data or events
directly with each other. IPT is targeted for non-realtime Unix
implementation. It uses Unix domain sockets and TCP/IP sockets as the
transport mechanisms.

IPT was developed at the Robotics Institute, Carnegie Mellon University, by
Jay Gowdy and is used by their unmanned ground vehicle program. It is used
at the Robotics Institute and is also the middleware used by the MissionLab
from GeorgiaTech[66]. The source code is openly available for IPT.

4.4.4 RTC - Real-Time Communications

Real-Time Communications is a robust, flexible and reliable interprocess
communications middleware that provides real-time capabilities[80]. RTC is a
middleware that is quite similar to IPT in that it is message based and features
a server for registering module names. The major difference between IPT and
RTC is that RTC has been optimized for the VxWorks real-time operating
system. RTC has the capability to use shared memory on a VME backplane as
a transport mechanism, which is a high bandwidth technique for transferring
data between modules.

Jorgen Pedersen developed RTC for the Field Robotics Center (FRC) and the
Robotics Engineering Consortium (REC). It is used by FRC and REC and a
few commercial companies. RTC ascribes to the open source vision and is
freely available.

4.4.5 NML - Neutral Messaging Language

NML is a uniform applications interface (API) to communications functions.
It includes many popular protocols such as: interprocess shared memory,
backplane global memory, and UDP and TCP/IP networking[55]. It follows
the information based paradigm. Under this paradigm there is not a direct
connection between modules as there is under the message based paradigm.
Instead there are information producers and consumers. The producer of
information does not care who consumes the information and the consumer of
the information doesn’t care where the information comes from. The basic

DRDC Suffield TR 2004-287 23

mechanism used by NML for sharing information is a buffer. Information
producers put data into a buffer, while the information consumers read data
from a buffer. There is no direct method for signaling the presence of new
data. This is not required since NML has been designed as a facility for the
NASREM architecture which is an exclusively synchronous, time-based
robotics system. Under NASREM information is produced and consumed
under fixed clock cycles and hence there is no requirement to signal the arrival
of new data.

NML was developed by the National Institute of Standards and Technology
(NIST) and thus can be considered as an industrial standard. It has a fairly
large pool of users and has been ported to a large variety of real-time and non
real-time operating systems. NML is freely available from NIST.

4.4.6 NDDS - Network Data Distribution System

NDDS is commercial network middleware from RealTime Innovations that
implements a publish-subscribe model[43]. The publish-subscribe model is an
information based paradigm where there are information producers and
consumers. NDDS provides fast, deterministic data distribution over standard
IP networks. This is accomplished via the UDP transport mechanism and a
protocol built on top of UDP to ensure the delivery of messages. NDDS was
designed as a laboratory tool for the integration of networked instruments. As
a commercial product it has been ported to numerous operating systems
including VxWorks, Windows and several versions of Unix. Given NDDS’
commercial background it has a well staffed support center. NDDS is a closed
commercial product and the source code is not available.

4.4.7 MPI - Message Passing Interface

MPI is an interprocess communications toolkit optimized to distribute data for
parallel computing problems[39]. Parallel computing utilizes multiple
processors, each executing the same algorithm, to solve a single problem.
MPI allows the multiple processors to efficiently share data, whether it be a
multi-processor super computer or a TCP/IP connection between several
workstations. In its native format MPI is not useful for robotic applications
since its structure does not contain the tools to send, receive, dispatch and
handle named messages.

4.4.8 CORBA - Common Object Resource Broker Architecture

CORBA is object-oriented communications middleware for developing
portable distributed applications for heterogeneous systems[50, 10]. CORBA
was created by and is maintained by the Object Management Group (OMG).
OMG is the world’s largest software consortium with the backing of over 800

24 DRDC Suffield TR 2004-287

members. CORBA is an open standard and many implementations of CORBA
are freely available. The basic unit of information for CORBA is an object.
An object encompasses more that just a message type and data since the
object includes methods. The process that obtains a remote object can also
invoke operations on the object. While the holder of an object invokes a
method, the execution of the method is performed by the object’s creator. This
seamless integration allows CORBA based applications to execute code at
will on other processes and external processors. Standard CORBA has been
designed for general software use and therefor does not have specific support
for real-time applications.

A real-time version of CORBA, known as TAO8, is available which is based
on the Adaptive Communications Environment (ACE)[28]. TAO adheres to
the Real-time CORBA standard. The RT-CORBA specification defines the
standard features that support the end-to-end predictability for operations in
fixed-priority CORBA applications[92]. These standard policies and
mechanisms permit the specification and enforcement of end-to-end quality of
service (QoS) aspects such as bandwidth, latency, jitter and dependability.
This in turn allows CORBA to migrate to QoS sensitive domains such as
aerospace, telecommunications, medical systems, distributed interactive
simulations and robotics.

4.4.9 IPC - Inter-Process Communications

IPC is a toolkit developed for the NASA DS1 New Millennium mission by
Reid Simmons[94]. IPC is similar to IPT and RTC since it also subscribes to
the message based paradigm. It features the capability to route messages
through the IPC server or messages can be exchanged on a peer-to-peer basis.
IPC has been used on projects at CMU, NASA and DARPA including:
Carmen, DIRA, Skyworker and 3T. The source code for IPC is freely
available.

4.4.10 ACE - Adaptive Communications Environment

The Adaptive Communications Environment is a widely-used, open-source,
object-oriented middleware written in C++ that implements core concurrency
and networking patterns[91] for communications software[52]. ACE is
targeted for developers of high-performance, real-time communication
services and applications. Like CORBA, ACE is more than just a
communications toolkit. It provides a host of capabilities including:

• Concurrency and synchronization

• Interprocess communications

8The ACE ORB

DRDC Suffield TR 2004-287 25

• Memory management

• Timers

• Signals

• File system management

• Thread management

• Event demultiplexing and handler dispatching

• Connection establishment and service initialization

• Static and dynamic configuration and reconfiguration of software

• Layered protocol construction and stream-based frameworks

• Distributed communications services such as naming, logging, time
synchronization, event routing and network locking etc.

These extra capabilities allow code written using the ACE toolkit to become
operating system independent. Presently, ACE supports 22 different operating
systems including numerous real-time operating systems. ACE is suitable for
real-time operating systems due to its small footprint. The complete ACE
library is approximately 800K bytes in size9 which could be a significant
burden for some real-time systems. Consequently ACE can be broken into its
component libraries, each of which implements a specific capability of ACE.
These sub-libraries range in size from 10K bytes to 100K bytes.

While ACE is an open source, university based project, it also has the support
of numerous other institutions, companies, and funding agencies10.

4.4.11 Discussion

A high level overview of a selection of communications middleware has been
conducted. The complexity of the available middleware toolkits ranges from
the simplistic to the complex. All of the reviewed toolkits support numerous
non-real time operating systems including Linux.

The IPT, RTC and IPC middleware toolkits have been specifically written to
assist in the distribution of data between processes for robotic applications.
These middleware applications tend to be small, lightweight and fast and do
not have a negative impact on the system performance11, but limit the
designer in the manner in which an architecture can be constructed. IPT, RTC

9The ACE library size varies with the operating system and compiler used.
10Funding agencies include DARPA and the NSF. Over 20 companies have supported ACE.
11In terms of memory requirements and real-time applicability.

26 DRDC Suffield TR 2004-287

and IPC only support the message passing paradigm and thus any robotic
architecture using these middleware applications must reflect this message
passing philosophy. Additionally, these packages are maintained and used by
a small group of developers and thus their long term viability of these toolkits
could be questionable.

Other middleware toolkits come from a industrial heritage such as NML and
NDDS. These middleware toolkits, along with the MPI toolkit, support only
the information based paradigm and thus architectures designed around them
must adhere to the consumer/producer philosophy. MPI is not useful for
robotic applications in its current state. NDDS is a commercial, closed source
implementation which is contrary to the open source philosophy of the ALS
research.

ACE and CORBA are generic open source middleware applications. These
two middleware toolkits support both the message passing and information
based paradigm. This gives the user the flexibility in the architecture
implementation, since he/she can choose one or the other, or even use both
paradigms at the same time. While CORBA and ACE have similar
communications capabilities, CORBA incorporates other high level
capabilities that ACE does not support. The disadvantages of using generic
CORBA include: slow performance, large memory requirements and
complexity. The strengths of CORBA are its flexibility and its support for
modular and extensible software . The TAO implementation of CORBA
addresses the slow performance characteristics of generic CORBA by adding
support for real-time operations.

From the philosophical point of view researchers in the field of unmanned
vehicles should focus on the problem of implementing autonomy on
unmanned vehicles. Their focus should not be on developing middleware for
the distribution of data that facilitates the development of modular, flexible
and extensible code development. There are already experts in this field who
have examined this problem and who have created innovative solutions.
Researchers should build upon this existing body of knowledge and expertise
to expedite the development of unmanned vehicles.

4.4.12 Conclusions

The unmanned vehicles community has recognized the importance of
middleware for the development of autonomous vehicles. Historically,
unmanned vehicle researchers have handcrafted all components of their
vehicles. The driving force behind this approach was the lack of computing
power required to execute the algorithms required by the vehicle. Researchers
were keen to harness all the available processing power as efficiently as
possible and thus created specialized software. This process is akin to the

DRDC Suffield TR 2004-287 27

early day of computing12 where algorithms were handcrafted in assembly
language in order create highly optimized software. With the advent of faster
processors, programmers began to use higher level languages such as C and
eventually C++. These same forces are shaping the research field of
unmanned vehicles. The availability of more powerful processors and faster
networking capabilities has allowed the UV researcher to benefit from the use
of middleware toolkits. Just as the use of high level languages allowed
software programmers to implement more complex applications, the use of
middleware for unmanned vehicles will allow researchers to construct
unmanned vehicles that are more complex and thus more capable.

While middleware has been identified as a key component to a successful
architecture, a consensus has yet to emerge on specific middleware toolkits.
Recent trends in this area have promoted the use of TAO as generic
modularity and communications middleware. The TAO combination
encourages the development of modular, portable and extensible code, and
offers the developer flexibility in architecture implementations. TAO offers
more capabilities than currently required by unmanned vehicles, and these
extra capabilities should allow them to meet the future demands. These extra
capabilities have disadvantages such as large code sizes, poorer performance
and a steep learning curve. But it is believed that the advantages of TAO more
than offset the disadvantages of its use.

This investigation concludes that the CORBA implementation known
as TAO is the most suitable communications middleware for
autonomous unmanned vehicle applications.

4.5 Frameworks
4.5.1 Introduction

Frameworks are reusable designs of all or part of a software system described
by a set of abstract classes and the way instances of those classes
collaborate[57]. It is a reusable design for all or part of a software system and
by definition a framework is an object-oriented design. It doesn’t have to be
implemented in an object-oriented language, though it usually is. The use of a
framework simplifies the development of future software since the basic
design already exists and it is amenable for reuse.

4.5.2 Background

A variety of frameworks have been specifically developed for intelligent
systems and autonomous vehicles. These frameworks are constructed using
communications middleware and implement templates for commonly used

12Or software written for any computationally limited processor or microprocessor.

28 DRDC Suffield TR 2004-287

communications patterns. These templates do not define the architecture but
simplify the implementation of robotic software by hiding the mundane
details of implementing data flow patterns. Intelligent systems and
autonomous vehicles frameworks are relatively new developments and no
single framework has emerged as the dominant choice. The following sections
give an overview of frameworks that are available.

4.5.3 OCP - Open Control Platform

The Open Control Platform was developed to implement complex control
systems for autonomous vehicles that integrate a variety of different
component technologies and resources[111]. It specifically targets extreme
performance UAVs, such as the Yamaha R-50/R-max helicopter, the X-cell
VTOL UAV, and Boeing’s J-UCAS T-33 flying test bed. OCP defines a
hierarchy of control system layers that helps control the complexity of the
differing time scales among components. This hierarchy defines low level
control algorithms, mid-level control components and high-level control
components. It used Real-Time CORBA[92] and NDDS[43] as
communications middleware to achieve seamless distributed communications
between components running on different processors. Two separate
communications middleware applications are used since RT-CORBA excels at
generality and flexibility, while NDDS specializes in high performance, high
bandwidth situations. Work on OCP was initiated at the Georgia Institute of
Technology, but has subsequently migrated to Boeing and it does not seem to
be freely available for use by other researchers.

4.5.4 MARIE - Mobile and Autonomous Robotics Integration
Environment

The goal of MARIE is to create an integrated and coherent framework that
facilitates the reuse of applications, tools and programming environments[27]
. It uses the mediator design pattern[33] for distributed systems which
implements a centralized mediator. The mediator interacts with each
application independently, thus facilitating global interactions between
independent applications. To facilitate these interactions the mediator acts as a
translator between applications and thus must have knowledge of the
operation and communications format of each application. This centralized
mediator can be viewed as a server through which all interactions between
applications (clients) must pass. The core MARIE functional components and
communications framework are based upon the Adaptive Communications
Environment (ACE)[91, 52]. MARIE is a relatively new project with the first
version (0.1) being released in June, 200413. It currently has application
adaptors for Player/Stage, CARMEN and RobotFlow/FlowDesigner.

13MARIE is available from marie.sourceforge.net and is GPL’d software.

DRDC Suffield TR 2004-287 29

4.5.5 CARMEN - The Carnegie Mellon Navigation Toolkit

CARMEN is an open source collection of robot control software designed to
provide a consistent interface and a basic set of primitives for robotics
research on a wide variety of commercial robot platforms[87]. It has a
modular software design that is influenced by the three-tier architecture
popularized by Bonasso et al. [11]. The design goals of CARMEN were ease
of use, extensibility, and robustness. These design goals were achieved using
the following programming principles:

• Modularity: Software is developed as modules (components) that
communicate using IPC[94].

• Simple core modules: The basic primitives of CARMEN include base
control, localization, tracking and path planning.

• Separation of control and display: No core CARMEN modules have
embedded graphical displays, all information is communicated using
standard communications protocols. This helps ensure all information
that could be useful is available to all modules.

• Abstract communications: All communications functionality is
encapsulated by abstract interfaces, thus allowing for the underlying
communications mechanisms to be easily changed.

• Abstract hardware interfaces: CARMEN supports a standard set of
interface functions to ensure uniformity of operation across platforms.
Thus higher level code can seamlessly command all platform bases in the
same manner.

• Standardized coordinates and unit: All units in CARMEN use the
International System of Units (SI), with degrees being measured in
radians. There are three co-ordinate frames: robot frame of reference,
global frame of reference and a map frame of reference.

• Centralized model repository: CARMEN, via IPC, supports a central
repository that distributes a consistent set of parameters to all processes.

CARMEN supports a variety of commercial platforms including the Nomadic
Technologies’ Scout and XR4000, ActivMedia Pioneers, and iRobot’s b21
and ATRV series. It also support the following high-level functions:
navigation, localization and tracking in 2-D worlds.

4.5.6 Orca

Orca is an open-source framework for developing component-based robotic
systems. It is based upon the research conducted by the OROCOS@KTH14

14The Centre for Autonomous Systems (Cas) is a research centre at the Kungliga Tekniska Skolan in Stockholm.

30 DRDC Suffield TR 2004-287

project whose mandate was to build a set of communications patterns to allow
communications between distributed objects. Orca provides the means for
defining and developing the building-blocks which can be pieced together to
form arbitrarily complex robotic systems, from single vehicles to distributed
sensor networks[13]. The Orca project plans to achieve these goals via the
decoupling of components. The decoupling of components is achieved by
using CORBA as middleware[10]. The specific CORBA implementation used
by the Orca project is ACE/TAO[52]. Orca is new open source project, hosted
on Sourceforge15, that has been in existence since June, 2004. About a dozen
or so Orca component modules currently exist, with a majority being at the
beta status, while others are alpha or in the planning stage.

4.5.7 MIRO

Miro is a distributed object oriented framework for mobile robot
control[31, 102, 35]. It is middleware for robots that reduces software
development times and costs by providing often-needed data structures,
functionalities, communications protocols and synchronization mechanisms
for robots.

A key aspect of Miro is the adherence to object oriented design principles
such as information hiding, name spaces, exception handing, type
polymorphism and inheritance. The Miro framework focuses on:

• Open Architecture

All Miro software is freely available under GPL and thus developers are
free to read, change and contribute to the software.

• Hardware and Operating System Abstraction

Sensor and actuator subsystems along with other low level services are
abstracted via objects and thus provide a uniform interface to these
subsystems. This allows higher level code to seamlessly interface with all
subsystems.

• Multi-Platform Support and Interoperability

The Miro software is built upon the Adaptive Communications
Environment (ACE)[52] which support numerous platforms and operating
systems.

• Communications Support and Interoperability

Communications support is provided by CORBA [10] middleware.
CORBA allows for the development of portable distributed applications
using object oriented communications facilities. To ensure the

15http://orca-robotics.sourceforge.net/

DRDC Suffield TR 2004-287 31

responsiveness of the complete system a real-time implementation of
CORBA, know as TAO [28], is used.

• Client/Server Systems Design

To encourage portability Miro encourages the use of the client/server
paradigm where modules provide services to other modules via defined
interfaces.

When implemented together these features create robot middleware that is
scalable, flexible and extensible. The extensibility and flexibility allows it to
easily support other robotic platforms beside the currently supported B21,
Pioneer 1 and Sparrow platforms. Miro currently provides the following robot
middleware services that assist in the distribution of data gathered from
devices: motionService, laserService, sonarService, irService, tactileService
and imageService. Miro is currently used on soccer playing robots and is
freely available from the University of Ulm.

4.5.8 Discussion

Frameworks for intelligent systems and unmanned vehicles are just beginning
to emerge and have not yet gained widespread acceptance in the unmanned
vehicle community. At present there is not a dominant framework offering for
unmanned vehicles. An underlying problem confronting UV frameworks is
the lack of agreement in the unmanned vehicle community over the type of
communications middleware that is most applicable to unmanned vehicles.
While a UV framework standard has yet to emerge, recent years have seen a
migration away from the specialized, lightweight robotic middleware such as
IPT, IPC and RTC, towards more generic middleware applications of ACE
and CORBA.

OCP, is based upon real-time CORBA and has been implemented and tested
in UAVs but is not openly available. Although the OCP framework is a
proprietary system, its use of CORBA implies it should be possible for any
UV based upon Miro to communicate with an OCP based UV. The MARIE
open source project, which implements a client/server model using ACE, has
only recently been started and it may or may not gain momentum. The
client/server implementation of MARIE could lead to bottlenecks that may
limit its usefulness for applications that require large amounts of data passing
and processing power. CARMEN has been available for over two years and
has yet to see a wide scale acceptance. Orca is a new open source framework
for component-based robotic systems. It is based upon the use of ACE/TAO
(CORBA). The use of the ACE/TAO combination will give the users of Orca
tremendous flexibility in implementing unmanned vehicle architectures.
Unfortunately Orca is only in the preliminary stages of design and does not
yet have much to offer. Miro is an open source framework that is also based

32 DRDC Suffield TR 2004-287

upon ACE/TAO. Thus like Orca, Miro has tremendous flexibility. Unlike
Orca, the core Miro software is complete and it has been successfully used on
robotic platforms since 1999. While the core of Miro is stable, other parts of
Miro are still at the developmental stage.

4.5.9 Conclusions

Frameworks offer significant benefits to developers of UV systems. While it is
not guaranteed that the use of frameworks will gain widespread acceptance in
the UV community and that standards will emerge, the benefits of using one
of the currently available frameworks more than offset the risk of choosing a
framework that may not emerge as a dominant standard.

Frameworks based upon the CORBA communications middleware seem to
hold the most promise. The review of communications middleware in Section
4.4 concluded CORBA was the best toolkit available and thus frameworks
based upon CORBA are viewed as superior to the other non CORBA based
frameworks. Three of the reviewed UV frameworks were based upon CORBA
and only one of these frameworks supported unmanned ground vehicles.

The ALS program will adapt the Miro framework for use in its current
generation of unmanned vehicles.

Additionally, a close watch will be kept on the progress of the Orca project to
see if it gains more community acceptance. Given that both Miro and Orca are
CORBA based it should be feasible to migrate from one to the other if so
desired.

4.6 Simulation Environments
4.6.1 Introduction

In the field of autonomous robotics research, there are cases where real world
experiments are not feasible. Operating a group of 100 robots, for instance, is
a scenario beyond the means of most laboratories. Testing individual
sub-components in noise-free conditions with prescribed input variables and
total access to experimental parameters are the major reasons why simulators
are employed in autonomous robotic research. Simulated environments help
engineers build, test, and understand robot systems in the real world. While
simulators do not guarantee success in the real world, they reveal situations
where a system may fail.

4.6.2 Background

There are three general simulation environments used in research at this time:

DRDC Suffield TR 2004-287 33

1. 1D Simulations (“playback data”)

2. 2D Simulations

3. 3D Simulations

Simulations not covered in this section are those conducted with single
devices, for example, in a testing capacity. While these device simulations test
individual devices or algorithms, this discussion of simulation environments
will include only environments designed for complete robot system
simulation.

1D simulations describe situations where the data from a real world
experiment or a theoretical data set is fed back into an algorithm or
subcomponent of a program and the output is observed. This level of
simulation is meant to observe the response of the program in question
without the interaction of other components. This isolated type of experiment
can underline problems that may be obscured by other components.

2D simulations refer to a configuration space having x-axis and y-axis
components but no z-axis and are generally referred to as Cartesian
coordinates. The pose of any robot in this 3-space can be described by the
vector below. This vector represents the dimensionality of the configuration
space.

[x y θ]T

In effect, 2D simulations take the world and slice through real space parallel
to the ground and assume all objects have the same height. Objects in this 2D
world either exist on this plane or do not, denoting the difference between
obstacle space and free space. These simulations do not have a high degree of
fidelity in comparison to the 3D real world. These simulations do allow for
more robots to co-exist in the environment on a given computer since the
amount of data space held by each is smaller than a 3D simulated robot.
These models can simulate all dynamics in the Cartesian plane but cannot
emulate 3D devices.

3D simulations refer to a configuration space having x-axis, y-axis and z-axis
components as well as a rotation around each axis. The pose of any robot in
this 6-space can be described by the vector below. This vector represents the
dimensionality of the configuration space

[x y z φ ρ γ]T

34 DRDC Suffield TR 2004-287

where φ, ρ and γ correspond to rotations about the x-axis, y-axis, and z-axis.
3D simulations allow objects to exist at any point in the 6-space as they do in
the real world, and allow for a real world model of the environment to be used
to simulate every detail of interaction down to viscous friction.

The ALS project has a requirement for all 3 types of simulation environments.
The 2D simulators are much less complex, and tend to have no inputs to
change the configurable characteristics of the robot such as mass, shape, etc.
This simplicity makes 2D simulations well suited to studying group robot
behaviours, or for simulation of some indoor environments in which the
elevations or overhangs are not a concern. 3D simulators provide a much
more adaptable environment for exploring vehicle dynamics, or for perception
of and interaction with more realistic environments. This added complexity is
computationally intensive and this is not always appropriate for certain types
of research.

4.6.3 Unmanned Ground Vehicles
4.6.3.1 CARMEN

CARMEN (Carnegie Mellon Navigation) Toolkit has an organic
2D simulator built into its software package. This simulator uses a
virtual robot which operates in a digital map generated from a
previous real world test run. The virtual robot can be controlled
either by the user with a keyboard/mouse/joystick, or by intelligent
autonomous software (ie. CARMEN). While the virtual robot
navigates around the pre-loaded map, simulated data is generated
and passed to the autonomous software, or fed back to the user as a
picture of what the robot sees. As an added feature simulated
people can randomly wandering the mapped environment. This
simulator has a number of limitations such as being only able to
generate one type of data (range to obstacles), having few
configurable robot characteristics, simulating only one robot at a
time and having no method to control the simulated environment
(only simulated pre-existing maps taken from the real world are
allowed).

4.6.3.2 MobotSim

MOBOTSIM (Mobile Robot Simulator) is a software package for
2D simulation of differential drive mobile robots. This shareware
package provides a graphical interface simplifying the creation
and modification of robots and objects. MOBOTSIM has a BASIC
Editor to create macros that call specific functions such as: get
information about mobots coordinates; get sensor data; and set
speed etc. MOBOTSIM supports an unlimited number of mobots

DRDC Suffield TR 2004-287 35

and obstacles, including several obstacle shapes (line, rectangle,
round rectangle, arc, ellipse, sector, chord) and free-hand
drawings. It also offers simulated range sensors, typically
ultrasonic, with the ability to set configuration parameters like
radiation cone, range, and misreading percentage. For the
MOBOTSIM platform the configurable parameters include
platform diameter, wheel diameter, distance between wheels,
number of ranging sensors, and angle between sensors. Vehicle
dynamics are limited to two wheel differential drive robots.

4.6.3.3 EasyBot

Easybot is an universal robot simulator produced at the University
of Applied Sciences, Dresden. It operates as a plug-in module for
the LightVision3D (LV3D) 3D-modeller. LV3D can create
simulated 3D objects and build arbitrary forms of robots with
multiple sensors. Dynamic link libraries (DLL’s) written in C++
control each robot . For each simulation step Easybot calculates
the distance to the nearest object in front of its sensors, and
provides these distances and object properties to the controller.
Easybot can not detect collisions or model physics. However, if
desired, these capabilities can be implemented within user created
controller DLLs. For simulated interaction with other dynamic
objects, such as a ball in a robot soccer simulation, the user creates
these objects as a separate robot with its own controller DLL.

4.6.3.4 Webots

Webots is a proprietary 3D simulation program. It contains a rapid
prototyping tool for the creation of 3D virtual worlds with physical
properties such as mass, joints, friction coefficients, etc. It supports
both simple inert objects and active objects (mobile robots). It
supports numerous robotic locomotion schemes such as wheeled
robots, legged robots, and flying robots. Moreover, the robots can
be equipped with a number of sensor and actuator devices, such as
distance sensors, motor wheels, cameras, servos, touch sensors,
grippers, emitters, receivers, etc. Finally each individual robot can
be programmed to exhibit desired behaviors. Webots also contains
a number of interfaces to real mobiles robots, so the behaviors
developed under simulations can be used to control a real robot.

4.6.3.5 Player/Stage/Gazebo

Player/Stage/Gazebo is a package containing a controller and 2D
or 3D simulation environments in which playback data may be

36 DRDC Suffield TR 2004-287

incorporated into the simulation if desired. The 2D simulation
environment, called Stage, targets low fidelity simulation of
robots. Stage simulates a population of mobile robots, sensors, and
objects in a two-dimensional bit-mapped environment. Stage was
designed with multi-agent systems in mind so it provides fairly
simple computationally cheap models of many devices. Stage’s
simple environment enables the creation and operation of much
larger groups than would a similar 3D simulation. Stage supports
most devices developed under the Player server, supporting many
popular research robots such as the Pioneer II and the Segway.

Gazebo is the 3D simulation environment of the Player/Stage
package. Gazebo models robots and 3D terrain using the Open
Dynamics Engine, providing higher fidelity robots, albeit in
smaller numbers, than Stage. While generating both realistic
sensor feedback and physically plausible interactions between
objects, Gazebo supports a smaller subset of the devices than
Player. However, considerable developmental effort will reduce
this deficit over time. Gazebo supports mostly ground vehicles and
has support for a single type of air vehicle, a helicopter.

4.6.3.6 Vortex

Vortex is a software package with much more real-world fidelity
than athe aforementioned simulation systems. Vortex focusses on
real-time simulation that accurately models the physics of 3D
motion and interaction. It includes rigid body dynamics, accurate
collision detection, and comprehensive vehicle dynamics. While
the simulation includes motorized joints, springs, and suspension
and traction models of wheeled and tracked vehicles., there is no
large pre-defined library of existing robots or sensors. In Vortex,
sensor simulations will need to be written from scratch.

4.6.4 Unmanned Air Vehicles

There are a number of UAV simulators available, which test a wide spectrum
of UAV operations:

• Air vehicle simulation - Air vehicle respond to the air column ,to control
surface motion, and power changes.

• Meteorological / Turbulence models - Vehicle response to the air column
alone.

• Actuator models - Control surface response.

DRDC Suffield TR 2004-287 37

• Engine / thrust model - Thrust response.

• Payload pointing model - Payload orientation response as a function of
a/v dynamics and control inputs.

• Payload optical model - Optical distortion modelling as function of
motion and lens/imager characteristics.

• Autopilot model - Control outputs resulting from the time series of
control and sensor inputs.

• Attitude sensor models - Sensor response given dynamic motion
sequences.

• Payload control model - Payload viewpoint control given dynamic aircraft
behaviour.

• Mission management model - Payload and autopilot command modelling
for “results” control.

• Scene generators - Scene modelling of payload view given a/v position
and payload pointing, including image distortion in the payload optical
model.

• Data link models - Error, latency, and distortion models of data link
channels.

Most UAV simulations combine the above simulations elements. Many focus
on aircraft design issues, largely irrelevant for autonomous control at this
point. If the intent is mission rehearsal and operational effectiveness, the
required simulator will be different from what is needed to develop an
autopilot. Similarly, the development of high level automation strategies will
require a simulator with different attributes. Below are a few examples of the
types of simulators available:

4.6.4.1 Matlab/Simulink

Usually employed in simulating control subsystems for
engineering studies, Matlab/Simulink has been used to simulate
both complete aircraft systems and simpler UAVs. A significant
investment in time would be required to develop a model of the
UAV using Matlab/Simulink, and this development time would not
contribute to the problem of creating UAV autonomy. However,
BAE Systems has used this package to provide simulations for
developing a flight control system for a UAV.

38 DRDC Suffield TR 2004-287

4.6.4.2 RT-LAB UAV Engineering Simulator

This simulator is intended to help researchers develop controllers,
intelligence or deployment strategies and is based on Simulink. It
has software libraries, which contain many components common
to UAVs, such as navigation algorithms, propulsion models, flight
dynamics, atmospheric models, controls and sensors. Application
software uses these libraries to generate C code which can be run
as a simulation on a PC. Under this mode it can be used as a stand
alone aircraft simulator. It is also available with the RT-LAB
hardware simulator, which uses either a pilot operator station, or a
hardware in the loop controller via a D/A interface board.

4.6.4.3 MUSE

The Multiple Unified Simulation Environment, developed by the
US Joint Technology Center, is an air vehicle and data-link
simulation that simulates a tactical control station and a wide
variety of manned and unmanned air vehicles using a generic six
degree of freedom model to simulate air vehicle performance in
autopilot flight mode. It also includes a payload scene generator
and payload video control. It offers real-time operator-in-the-loop
simulation of multiple systems for the purpose of creating a
realistic operational environment. It was assembled from
off-the-shelf products. The Multigen Open Flight Database
generates the 3D payload scene and the Real-Time Advanced
Graphics Environment, from GreyStone Technology, is used for
visualization. It can currently simulate such vehicles as the
Predator, Hunter, Shadow and Pioneer UAVs.

4.6.4.4 CAE STRIVE

The CAE STRIVE UAV simulator consists of two components.
Firstly, a commercial off-the-shelf simulation development
environment, with packages for weather, terrain, weapons, sonar,
radar, optical sensors such as FLIR and CCD, and
communications. The second component is a package for
computer generated military forces to simulate a real-time virtual
battlefield. The battlefield forces have user-defined behaviours that
can interact realistically with the manned or automated systems
under simulation. CAE STRIVE uses a C++ API to interface with
the libraries. The simulation can be distributed over a network if so
required. This simulator is used by DRDC - Ottawa to evaluate the
potential applications for UAVs, and was further developed there

DRDC Suffield TR 2004-287 39

into the UAV Research Test Bed, which extended the simulation to
model specific characteristics of candidate UAVs and sensors.

4.6.5 Unmanned Underwater Vehicles

There are fewer simulation packages available for UUVs than for other types
of unmanned vehicles, because this field is less researched. Below are two
examples of AUV simulators:

4.6.5.1 CADCON

The Cooperative UUV Development Concept provides an open
and flexible simulation environment. CADCON is a distributed
system that allows for complex inter-participant activities and is
based on TCP/IP and the Client/Server model. Visualization for
this simulator is based on OpenGL, and it can model shapes like
torpedoes, open frames, fixed moorings, and acoustic messages. It
does not have fidelity to model the vehicle with respect to
hydrodynamics, but rather simulates the situation model of the
UUVs. It can also simulate teams of UUVs working together.
CADCON also contains a topographical sea floor as well as ice
cover, thermocline, salinity, water current and inanimate objects.

4.6.5.2 DeepC System Simulator

This simulation system provides simulation of many UUV
parameters such as mission planning and monitoring, vehicle data
like position, speed and depth. It can simulate the geometric shape
of the vehicle, its dynamic underwater behaviour, as well as
environmental factors like underwater landscape, flora and fauna,
and currents and layers. It also includes a sonar system, and can
generate strategies of computerized learning such as the training of
neural networks. This system uses a CORBA interface for
communications.

4.6.6 Discussion

The most important factor in determining the value of simulations is how well
the simulated results compare to real world experiments. It is a general rule
that simulations, regardless of fidelity, cannot guarantee comparable real
world results. Particularly in the case of mobile robotics research, simulations
are not sufficient to reproduce realistic interactions between all objects. This
is especially evident during nonlinear dynamics events such as friction and
contact/impact, both of which are poorly understood at best and highly
dependent on material property estimates. Simulators cannot guarantee

40 DRDC Suffield TR 2004-287

success in the real world, but failure to perform as expected in simulation
strongly suggests that the system will fail in the full complexity of reality.

4.6.7 Conclusions

Unfortunately, for the current state of the art in simulation environments, there
is no single simulator that simultaneously supports UAVs, UGVs, UGSs and
UUVs. While it is possible to use a unique simulator for each unmanned
vehicle class, different unmanned vehicle classes operating in different
simulated worlds would impose considerable complexity on simulation such
as inter-world consistency maintenance, timing, and interaction. However, for
existing high fidelity simulations this may be an appropriate solution, as
evidenced by the Sythetic Theatre of War (STOW) High Level Architecture
(HLA). The United States Office of the Secretary of Defense gave HLA the
mandate that new systems as well as several existing modeling and simulation
systems adhere to the HLA standards.

A solution may be to extend the capabilities of one simulator to supports
multiple unmanned vehicle classes. Classes sharing the same simulated world
would substantially reduce the implementation complexity. This simulator
extension work could be accomplished as a component of the “Unified
Approach to Control and Coordination of Unmanned Vehicles Teams in
Complex Environments” research 16 into the coordination UAVs, UGVs and
UUV in complex environments.

The Gazebo simulator, part of the Player/Stage/Gazebo system, is a possible
candidate for this extension since it is an Open Source project. Currently
supporting ground and air vehicle platforms, the source code for an Open
Source project is freely available and can be extended and modified as
required. Player/Stage/Gazebo has a 2D and 3D simulation environment and
both simulation environments are controlled by the same application. It can
also accept canned data from a file to use with a specific device. These are
very powerful features, allowing the experimentation with the same code for
1D, 2D, 3D, and real world simulations. These are features that are desirable
attributes for all unmanned simulators, as discussed in Section 4.6.6.

DRDC in conjunction with the open source community will extend
and modify the Gazebo simulation environment as required.

4.7 Experiences
4.7.1 Introduction

From our initial experiences with robot architectures, we have been able to
gain a large amount of invaluable experience. So far, we have used three

16This research is funded by a DRDC Technology Investment Fund.

DRDC Suffield TR 2004-287 41

Central
IPC
Server

Localization

People Tracker

Navigation

Mapping

Hardware

Simulator

Figure 9: Carmen System Architecture.

toolkits for robot autonomy. Each toolkit has strengths and weaknesses, and
from using these toolkits we learned about the problems of creating an
architecture for autonomy. This section offers descriptions of the software
packages we have used so far, the capacities in which they were used, and the
lessons learned from their application.

4.7.2 Background

4.7.2.1 Carmen

Carmen (The Carnegie Mellon Navigation Toolkit) is an
open-source collection of robot control software for obstacle
avoidance, localization, path planning, people tracking and
mapping from 2D laser data. It includes modular C++ programs
for robot control, data logging, navigation functions, and also
includes a 2D simulator. It is based upon IPC, an inter-process
communication toolkit, also from Carnegie Mellon University.
Software modularity through the use of IPC is one of its key
design principles. IPC also makes the system flexible and robust,
by spreading the computation load across a number of distributed
processes. Messages are passed between processes in a
Publish/Subscribe model, using the IPC server. The overall system
reliability is increased through the use of multiple, co-operating
processes. If a single module fails it will not halt the system since
the rest of the processes are still functional. Carmen is extensible
in that it is much easier to add new components when each one is a
self contained module. It also increases flexibility in that only the
modules which are needed can be loaded. At DRDC - Suffield, we
have done some basic simulations with autonomous goal seeking
and laser range finder capabilities. A investigation of porting
CARMEN to a small 4-wheeled vehicle, the eXtreme Test Bed
(XTB) was conducted and this investigation concluded that the
effort required to conduct the port was too great.

42 DRDC Suffield TR 2004-287

4.7.2.2 Player/Stage

The Player/Stage project is another toolkit for robotic
development. It has many similarities to the Carmen project. It is
open-source, distributed over TCP/IP, and modular. It uses a
central server called Player, and the simulator is called Stage. The
Player package consists of three main parts:

1. The server runs on a processor directly connected to the robot.
It provides control for the robot and acts as a communications
hub for all the devices and controllers in the system.

2. One or more Player clients which connect to the Player server
either from the same processor, or from a remote station. The
Player client uses a TCP/IP link to issue commands to the
robot and retrieve data. A client may be a user interface for
tele-operation, software which retrieves data or software that
creates autonomous behaviours.

3. Drivers are loaded at run time and provide the interface
between specific devices17 and the Player server. The
Player/Stage project also contains drivers for higher level
autonomous behaviours. Unlike Player Clients, or Carmen
modules, Player Drivers are tied intimately to the server. They
are threads of the server process, and must be run on the same
processor.

The Player project contains a number of pre-existing software
modules such as: a tele-operation programs; obstacle avoidance
algorithms; and drivers for controlling physical hardware like the
Segway RMP and the SICK laser scanner.

The Player/Stage environment was used in two main capacities at
DRDC - Suffield. The first application involved simulating a
complete navigation system in the Stage 2D simulator. This
included the use of obstacle avoidance algorithms (Vector Field
Histogram), global path planning (Wavefront planning), and
localization (Adaptive Monte Carlo Localization). These were
combined to provide a global “go to” for a simulated mobile robot
in a complex building environment. The system structure is shown
in Figure 10.

The second application of Player/Stage was in real world trials
conducted with the Segway RMP robot. These experiments
included: dead-reckoning tests; GPS waypoint following; and

17Such as the Segway, the SICK laser and the GPS unit.

DRDC Suffield TR 2004-287 43

Wavefront
Path Planner

Position
Information

Position
Information

Player Client
User Created

Player Client
User Created

Player Server

Monte Carlo

Path PlanningLocalization

Steering and Velocity Commands
SICK Data

Player Driver

Odometry

Commands

SICK DataSICK Data

Commands

Player Driver

Obstacle Avoidance

Player Driver

Histogram
Vector Field

Robot Platform or Stage simulator

Figure 10: Simulations in the Player/Stage Environment

GPS driver

Segway driver

SICK driverPlayer Server

Connection to:
−User’s Player client
−Player Server on other robot

Sokia
GPS
Receiver

SICK Laser Scanner

SegwayRMP platform

Ethernet

Autonomous Player Client

Mesh Radio
Network

Laptop PC on Segway

TCP/IP

RS−232

CANBus

USB/RS−422

Figure 11: Player Software for Segway RMP Trials

obstacle avoidance of both static and dynamic obstacles. A SICK
laser scanner was used for obstacle avoidance. In addition,
multi-robot cooperation was attained by allowing the robots to
share GPS position information to create leader/follower
behaviour. The software control system used on each robot, as
well as to provide multi-robot communication was based entirely
around Player/Stage and TCP/IP protocols, as shown in Figure
11[45]. The large base of software available in the Player project
allowed these demonstrations to be developed rapidly and only
minor modifications to the Player drivers were required. The
DRDC staff were then able to focus efforts on writing Player client
software to create the desired autonomous behaviours.

4.7.2.3 Miro

Miro (Middleware for Robots) is an open source CORBA based
object-oriented framework initially developed for RoboCup soccer
robots. It has since been expanded to run a number of different

44 DRDC Suffield TR 2004-287

Office LAN

Radio
SpeedLAN

−Laptop PC

−GPS Receiver
−SpeedLAN Radio

Segway RMP:

−SICK Laser Scanner

−Player Server for controlling
 robot and sensors
−Player Client for autonomy

(Player Client for teleoperation
sending goals, receiving telemetry)

Desktop PC

Radio mesh network

Figure 12: Robot Control in Segway RMP Trials

platforms and support a number of sensor types. In contrast to the
Player and Carmen approaches, Miro doesn’t push all device data
through a centralized server, but instead uses a distributed
approach that allows data to flow directly from the devices to the
consuming applications. Miro allows multiple client programs to
communicate with multiple service programs running on a TCP/IP
network through an event driven process. Network name and
service resolution is handled via the CORBA “Naming Service”
which acts as a telephone book for remote objects. This allows
routing of services to clients without the clients explicit knowledge
of the network structure. Figure 13 shows the data flow for a
low-level hardware device. A device communicates to Miro
through its device connection “devConnection”. When the device
sends information over the “devConnection” an interrupt is
generated. This interrupt is sent to a callback routine in
“devEventHandler” which is responsible for reading in the
message. Once the message has been read in it is dispatched to the
“devConsumer” object whose responsibility it is to parse the
message and integrate it into the devices interface implementation,
“InterfaceImpl”. The “InterfaceImpl” then generates a CORBA
Event and the data is pushed onto the “Event Channel” where it is
distributed to the clients which have subscribed to the “Event
Channel”. The client programs themselves can operate in polled,
event based, or mixed mode. It is important to note the separation
between device and interface. This allows enhanced portability by
allowing sensors of the same type to use the same interface while
shielding the specific details of device communication from the
client.

While there are a number of pre-existing software services which

DRDC Suffield TR 2004-287 45

devConsumer

InterfaceImpl

Hardware Device

devEventHandler

devConnection

CORBA Event Channel

Client #2 Client #3Client #1

Polled Mode Event Based Mode Polled and Event Based

Interface Specific

Device Specific

Figure 13: Data flow for a Miro service

exist under Miro, many will need to be written to suit the unique
needs of the ALS program. However, when the Miro framework is
used, new software consistency and compatibility between
software modules is ensured. The Miro framework presents a steep
learning curve for the developer, but once it is understood the
development of software is straightforward. To date,
DRDC-Suffield has developed Miro compliant device drivers for
devices such as: an Inertial Measurement Unit (Microstrain
3-DMG); a custom nodding SICK laser scanner with an Ethernet
interface; and a Garmin GPS unit. Where applicable, we were able
to port code from the Player package into Miro with little effort.
The results thus far have been very encouraging. The data
throughput rates under Miro are greater than with the Player
package. As well, the distributed nature of Miro together with the
CORBA Naming Service will allow for a robust system to be
developed.

4.7.3 Discussion

We learned a number of lessons about Carmen, Player/Stage, Miro and robot
architectures in general, while undertaking these experiments. The most
important lesson learned was that the distributed client/server model is very
powerful. The model can have many different applications simultaneously
connecting to the robot, with each application accessing information or
writing the commands. The distributed model makes it easy to communicate
across a network and move processes around to where it is most convenient or

46 DRDC Suffield TR 2004-287

where processing power is available. It should be noted that the Carmen
central server is only a message passing mechanism, and does not have any
robot functionality tied to it. Player is a less flexible design where the device
drivers are tied directly to the Player server and this arrangement makes it
harder to distribute tasks. In addition, all of the Player drivers must be started
at the same time that the server starts, whereas under Carmen processes can be
started asynchronously. To further clarify the architectural difference between
Player and Carmen, IPC under Carmen uses a Publish/Subscribe model to
deliver messages and Player uses a Client/Server model. Under IPC processes
communicate directly with each other and only use the server for acquiring
connection information. Player uses a Client/Server model in which the
central server contains all data, and controls the frequency of data available.
This makes the Carmen system more flexible and robust. A work around for
the single Player server issue exists that involves starting multiple servers, but
this is not an efficient use of resources.

The second lesson learned is that modularity is extremely important,
especially during the development process. For example, during our
experiments with the Segway RMP, the developers created one software
program which would correct the robot odometry based on GPS information.
A second piece of software was then created which provided a series of
waypoints from the user to the robot. Then a third program was created which
would allow one robot to interrogate another robot to get its position. All of
these programs were implemented in a modular format and thus can be run
concurrently to provide the combined functionality. Additionally, each of the
modular software pieces can be optionally loaded at run time to create
different robot configurations. For example, it is easy to start the robot with or
without GPS localization, or with or without high level path planning.

A third lesson garnered from the experiences with these robotic toolkits is
centralized configuration and setup can greatly increase system usability.
Centralized configuration means having all of the adjustable parameters for
the robot being stored and distributed from one place. Both the Player and
Carmen projects use this approach. Carmen has what is called a parameter
server which is a separate process that distributes settings to Carmen modules.
The parameter server is a repository or registry of values to be used during
operation of the robot, such as maximum allowed velocity, robot size, etc. In
Player, each time a Player server is loaded, the user must supply a
configuration file which tells the server which drivers it needs to load and the
specific settings for each of them. For example, the configuration file controls
the sensitivity of the obstacle avoidance algorithm and serial data rate for the
laser scanner. Using either of these methods a centralized configuration means
that once a robot is set up and confirmed operational, it is possible to retain
this configuration for future use. It also means that a user need not have any
knowledge of the code structure in order to adjust the system performance or

DRDC Suffield TR 2004-287 47

to change its functionality. This run-time loading of parameters can greatly
reduce the number of software compiles needed as well. The advantage of the
Carmen parameter server system over the Player system is that parameters
like maximum speed can be changed during the operation of the robot.

The final lesson learned is that standardization is important. It is vital to create
well defined interfaces. An interface simplifies the process of writing software
and allows other processes to easily access the data from this new software.
This is one area where the Player project is very strong. For example, the
position commands sent to the robot are identical, no matter which platform is
being used. From the point of view of the autonomous control it is completely
transparent as to which type of robot is being controlled, or even if it is a
simulated robot. As another example, from the point of view of the rest of the
system, every GPS sensor provides the same interface. It becomes almost
effortless to move control software from a simulation, to one type of robot,
and then to another type of robot. On the other hand, the Carmen project does
not have nearly the same degree of standardization in interfaces as does
Player. With the number of different hardware devices on a robot, this can
become very burdensome. Under Carmen it is difficult to add a new hardware
device, or to port the system to a new robot platform. It is necessary to dig
through the source code for each separate device in order to see how it was
implemented before the device can be controlled.

4.7.4 Conclusions

With both Player and Carmen, there are system design issues which would
hamper long term autonomous robot development. Both are steeped in the
two dimensional, indoor robot mindset, although, in this aspect Player is less
restrictive than Carmen. However, the Player system has no easy mechanism
for passing messages between clients whereas Carmen is strong at
interprocess communications. Although the pre-defined interfaces available in
Player are useful for quickly developing software, they could limit the
proposed unmanned vehicle research at DRDC - Suffield. One other problem
with Player is that the server execution time can restrict device operation
speed. As one example, we have found a practical limit to the data rate
available from a SICK laser scanner.

Finally, both packages lack a command arbitration structure. They do not
prioritize the commands to the hardware, and no ability to deal with
competing priorities. Carmen simply lumps all the navigation functions in one
process. Player/Stage uses a hierarchy between the drivers (ie. a planner
passes position goals to obstacle avoidance, which passes speed and direction
to the robot platform). Both of these leave little room for flexibility in system
design.

The experience gained using Carmen and Player has added further

48 DRDC Suffield TR 2004-287

justification for selecting the MIRO framework and its underlying CORBA
middleware as infrastructure services for the architecture for autonomy.
Miro/CORBA provides the flexibility and message passing capabilities of
Carmen/IPC, without the constraints of Player interfaces and the tight
server-driver coupling. of Carmen

4.8 Conclusions

The AIS activity at DRDC does not view autonomous vehicles as standard
commodities, but instead they are viewed as evolving platforms that are in a state of
flux. Thus, the architecture for implementing autonomy must posses the characteristic
that will support this unique research and development model. This architecture must
be, for any single vehicle architecture, consistent with both the UGV Electronic
Hardware Architecture and the UGV Software Development Environment and, further,
must not be limited to UGV operations. The infrastructure services described in this
section allow for the implementation of an architecture that is inherently modular and
distributed. It allows information to easily flow to wherever it is required. This
seamless flow of information lead to scalability and extensibility architecture whether it
be within a single UV or a multi-vehicle group.

The architecture for autonomy will achieve the desired modularity, scalability
and extensibility through the use of the ACE/TAO middleware and the Miro
framework. Simulations, at all levels, will be an intrinsic capability for this
architecture.

The architecture for autonomy will allow UVs to evolve with changes in their
environment, thus meeting the requirements of the future battlespace. The distributed
nature of the architecture for autonomy is well tailored for the implementation of
distributed intelligence and multi-vehicle operations. Information moves as easily
between independent UVs as it does within a single UV. This allows an UAV to share
its bird’s eye view of the world with an UGV located on the ground and a UGV passed
its current position to a group UGSs. This architecture is expected to meet the needs
UV research for the foreseeable future.

5. System Integration

5.1 Introduction

This section describes the approach to be used to meet the autonomy requirements that
were detailed in the previous sections of this report. Section 1. outlined the
architectural requirements for researching, developing and implementing autonomy on
unmanned vehicles. It proposed a component based architecture that is highly modular
and extensible and supports real world operations, the playback of acquired data and

DRDC Suffield TR 2004-287 49

Processor #1 Processor #2

CORBA

CORBA

Process #2

Process #2

Process #1

CORBA

CORBA Interface

CORBA Interface

Figure 14: CORBA Networking

simulation environments. Section 4. detailed the infrastructure services required to
meet these architectural requirements. These services included a communications
middleware toolkit, a framework for developing autonomous vehicles and a simulation
environment.

This section details how each of these services is integrated into the overall system to
create the architecture for autonomy. An in depth explanation of the role played by
each service is given in the following sections.

5.2 CORBA Integration

CORBA was selected as the communications middleware of the architecture for
autonomy. It encourages the development of modular, portable and extensible software,
thus giving developers flexibility in implementing architectures. A key aspect of
CORBA is its ability to make networked operations transparent and seamless. Through
the use of the IDL language and compiler, a CORBA object and its data and methods
are inherently network aware. Thus any process, whether it is local to the native
processor or on a external processor, can acquire a CORBA object and access its data
and methods. Figure 14 illustrates CORBA’s extensibility.

In the example shown in Figure 14 Process #1, located on processor #1, provides a
CORBA compliant interface. When process #2 accesses the CORBA interface of
process #1, it is irrelevant whether process #2 resides on processor #1 or processor #2.
This ability to move code from processor to processor without changes is one of the
great advantages of using CORBA as communications middleware. It gives UV system
integrators tremendous flexibility in expanding or contracting the computing power
available, as it is required by individual UV platforms.

5.2.1 CORBA Naming Service

CORBA compliant processes, using the TAO implementation, can be moved
from processor to processor without the need to recompile code. Additionally,
CORBA processes do not require configuration files or the passing of

50 DRDC Suffield TR 2004-287

Processor #1 Processor #2

CORBA

CORBA

Process #2

Process #2

Process #1

CORBA

CORBA Interface

CORBA Interface

CORBA Naming Service

Reply

Request

Reply
Request

Register

Figure 15: CORBA Name Service

command line arguments. The CORBA Naming Service plays the critical role
in enabling this flexibility. Figure 15 shows the operation of the CORBA
Naming Service.

A CORBA compliant process that wants to share data with other processes
registers its interface with the CORBA Naming Service as an object with a
text name. Other processes can access this CORBA object by using the text
name to request the object. Once the object has been retrieved it can be used
as if it is a local object.

5.3 Miro Integration

Miro is a robotics framework based upon the TAO implementation of CORBA. This
framework defines interfaces that are commonly required by robotic applications. The
interfaces defined by Miro include: Odometry, Motion, RangeSensor, Stall, Video,
PanTilt, Button, Speech and others.

A key aspect of all Miro interfaces is their ability to transform data into abstract
information. This transformation is best illuminated via an example. Odometry
represents the position of the robot as x, y co-ordinates and heading, regardless of the
source of the odometry data. Thus a robot that uses an encoder for odometry, or a robot
that uses a GPS would represent position using the identical format. Similarly the
RangeSensor interface represents range in a uniform manner whether the range
information originates from sonar, infrared, tactile or a laser ranging device.

5.3.1 System Initialization

The MIRO system provides a ’naming service’ for each robot. Within a given
namespace, the system can provide a number of services that are free to come
and go over time. MIRO services are typically, but not necessarily, provided

DRDC Suffield TR 2004-287 51

by independent processes residing within the vehicle network. When
initialized, each service publishes its existence within the local naming
service.

5.3.2 Current Services

MIRO provides a number of object-oriented interfaces that are frequently
offered as services or form the foundation of derived (in the OOP sense)
services:

• Odometry: The odometry service propagates the robots current position
and velocities and encapsulates the odometry (dead reckoning) sensor.

• Rangesensor: The range sensor interface is the general abstraction of all
range sensor devices, such as sonar, laser range finders etc. It provides a
method for querying the sensors physical configuration as well as the
latest sensor reading.

• Battery: A service for interrogating battery level.

• Sonar: A service for sonar based devices with crosstalk protection.

• Infrared: A service for infrared range sensors.

• Tactile: A contact or ’bumper’ sensor service.

• Stall: Similar to the tactile interface the stall detection monitors the robots
motion and detects when the robot is stuck in its movement.

• Video: The video service provides camera images at a rate of up to 25
images per second captured by frame grabber cards or IEEE 1394
cameras.

• Buttons: For simple user interaction, some robot types provide push
buttons.

• PanTilt: Cameras often are mounted on top of a pan-tilt unit, allowing the
robot to look sideways while moving in another direction.

• Speech: To provide a more natural way of communication, some robots
are equipped with speech synthesizer cards.

• Motion: A generic service providing steering command and control.
Often provides the foundation for other Motion classes.

Commonly, many of these interfaces are combined within a single process.
However, some of these services become sufficiently complex to warrant an
independent process18. MIRO provides a natural consolidation of these

18This process could be located on a different processor.

52 DRDC Suffield TR 2004-287

services with a Base, a collection of services running within a single process
that embodies a single system, typically a vehicle.

5.3.3 Future Services

• GPS: The GPS service propagates an instantaneous DGPS position and
heading.

• INS: The INS service propagates an instantaneous orientation, magnetic
north, and cartesian accelerations.

• Pose: The pose service propagates a current filtered position and
orientation.

• Engine: The engine service provides basic operations and monitoring
services for an internal combustion engine.

• Emergency: An alarm service reporting an emergency condition.

• Ackerman: A motion subclass designed to provide an interface to
ackerman steered vehicles.

• Map: An abstract superclass used for both local and global mapping
services.

• Perception: A fusion service that generates a fused 2.5D map.

• Avoidance: A map-based obstacle avoidance service.

• Routing: A map-based planning service.

• Arbitration: An action-decision service.

• Additional services may include a set of duplicate Gazebo services to
provide simulated data feeds from sensor sources.

– application initialization including application
parameter/configuration files

– interprocess communications

– error logging for standardized error reporting and retrieval

– data logging for uniform data formats.

– watchdog services for module recovery/reinitialization.

DRDC Suffield TR 2004-287 53

5.4 Simulation Integration

A key aspect of the architecture for autonomy is its support for multiple operating
environments. An UV must transition between operations: in the real world, on stored
playback data, and in a simulated environment. These transitions must occur in a
seamless manner without requiring the user to change or recompile existing software.
This capability to operate under multiple environments is invaluable for the timely
research and development of unmanned vehicles.

The current status of simulation environments was reviewed in Section 4.6. This review
has concluded the most capable UGV simulation environment is the
Player/Stage/Gazebo simulation toolset.

Three separate approaches have been identified that would facilitate the integration of
simulation into the architecture for autonomy. These approaches to integration are
referred to as, TAO Centric, Player Centric, and Hybrid. They are differentiated by how
external devices are interfaced.

5.4.1 TAO Centric

Figure 17 shows an example of how a selected subset of UGV capabilities
could be integrated into the architecture for autonomy using the TAO
middleware. Under this configuration all communications within the robot
and to external sources are accomplished via defined CORBA interfaces.
Intelligent devices such the SIL SICK Laser could implement CORBA
interfaces directly. Devices without intelligent capabilities would be
controlled by an interface process which would gather the data from the
device using the device’s native driver and then make this data available to
other modules via a CORBA interface.

5.4.1.1 Data Playback

A common practice that aids in the verification or trouble shooting
of an algorithm is to log the raw sensor data to a file. This logged
data can then be run back through the algorithm in order to
recreate conditions that caused the algorithm problems or verify
the correct performance of the algorithm. The playback logged
data is applicable to any source of sensor data.

5.4.1.2 Simulated Environment

The use of a simulation environment is useful when algorithms are
in the developmental stage. It allows the developer to interactively
track down bugs and tune the performance of an algorithm without
the need of a complete UV platform. Given that there are a limited
number of UV platforms available and many team participants,

54 DRDC Suffield TR 2004-287

Real World

Logged DataSimulated World

Stage/Gazebo

Logged

CORBA

Player

Client

Player

Server

CORBA

Sensors

Planning
World
Rep.

LearningNav

Movement

Robot Intelligence

Sensors

CORBACORBA

CORBA

CORBA

CORBA

CORBA

Figure 16: TAO Centric using Stage and Gazebo

this capability is crucial for allowing development to progress at a
reasonable rate.

Player/Stage can be integrated into the system by constructing a
Player Client that presents CORBA interfaces to UV intelligence
modules. The Player Client uses standard Player library calls to
acquire simulation data from the Player Server and to command
movement within the simulation world. The Player Client registers
the appropriate interfaces with the CORBA Naming Service and
thus any higher level intelligence module requiring these services
can dynamically find and bind to the required interface.

If only 3D simulations are required the TAO Centric approach
could also interface directly with the Gazebo. The integration with
Gazebo is shown in Figure 17.

DRDC Suffield TR 2004-287 55

Real World

Logged DataSimulated World

Logged

CORBACORBA

Sensors

Planning
World
Rep.

LearningNav

Movement

Robot Intelligence

Sensors

CORBACORBA

CORBA

CORBA

CORBA

CORBA

Gazebo

Figure 17: TAO Centric using only Gazebo

5.4.2 Player Centric

A second configuration is called the Player Centric approach. This approach
uses the capabilities of the Player/Stage simulation environment as the key
tool for integrating external devices into the UV platform. Figure 18 shows
the Player Centric configuration. This integration strategy uses the Player
Client/Server combination to control and acquire data from devices. These
devices could be represented by: a physical device, logged data or a device in
a simulated environment. When the Player Server is invoked, a configuration
file defines the device mapping to be used. By tailoring the device mapping to
suit the desired operation, the Player Server can be instructed to match one of
the defined operating modes.

The Player Centric approach has the advantage of being able to leverage the
existing device drivers provided by Player/Stage and to use new device drivers
as they are developed.

56 DRDC Suffield TR 2004-287

Real World

Learning
World
Rep.

Nav

Logged DataSimulated World

Stage/Gazebo

Logged

Player

Client

Planning

Player

Server
Native

Driver

Driver

NativeMovement

Robot Intelligence

Sensors

Sensors

CORBA CORBA CORBA

CORBA

CORBA

CORBA

Figure 18: Player Centric Integration Plan

5.4.3 Hybrid

The Hybrid integration strategy is a combination of the TAO Centric and
Player Centric approaches. Under the Hybrid approach high throughput
devices are not routed through the Player server, but instead have their own
separate CORBA interface. Thus devices such as cameras do not negatively
impact the performance of the Player server. The interface for low throughput
devices remains with the Player Server. This Hybrid approach attempts to use
the best parts of the two alternative approaches. With this configuration the
ability to use a majority of the existing Player/Stage device drivers is
maintained without a performance penalty being applied to devices with high
bandwidth requirements. Figure 19 shows a block diagram of the hybrid
integration approach.

5.4.4 Discussion

Each of the three integration strategies discussed in the previous section have
advantages and disadvantages. Each approach requires the writing or

DRDC Suffield TR 2004-287 57

Real World

Learning
World
Rep.

Nav

Logged DataSimulated World

Stage/Gazebo

Logged

Player

Client

Planning

Player

Server
Native

Driver

Driver

NativeMovement

Sensors

Sensors

CORBA CORBA CORBA

CORBA

CORBA

CORBAIntelligence
Robot

Camera
Laser

SICK

CORBACORBA

Figure 19: Hybrid Integration

adaptation of drivers and interfaces.

The Player Centric plan builds upon a large set of existing devices drivers. For
this approach most of the required drivers already exist. Devices added to
Player/Stage by its development community are portable since all drivers
follow a common standard. This approach simplifies the integration with the
simulated environment since the same TAO to Player interface is used for all
devices.

On the other hand, the TAO Centric configuration is better adapted for
operations on a real UV. This integration strategy allows individual modules
to communicate directly with devices on an “as required” basis. The Player
Centric approach forces all device interactions to be routed through the Player
server. This centralized routing is a potential bottleneck that could slow the
operation of the entire UV and inhibits the assigning of operating priorities to
devices. The TAO Centric approach, which allows for peer-to-peer
communications, does not suffer from these centralized routing issues. Using
the TAO Centric paradigm the software on the UV can be optimized for

58 DRDC Suffield TR 2004-287

real-time operation and thus efficiently use the available processing power.
While the TAO Centric approach is optimal for real-time operations, it lacks
support for numerous device drivers.

The Hybrid configuration is an attempt to combine the ease of implementation
of the Player Centric approach with performance characteristics of the TAO
centric approach. Most devices are routed through the Player Server with the
exception of high bandwidth devices that use TAO interfaces.

5.4.5 Conclusions

The three integration plans, proposed in the previous sections, have distinct
advantages and disadvantages. While it tempting to use the simplistic Player
centric approach, the performance penalties of routing all data through a
single Player server are unacceptable. The TAO centric approach excels under
real-time conditions, which it a critical attribute for UVs operating in the real
world, but even with the use of the Miro framework much effort would have
to be expended in developing device drivers. The Hybrid approach is a
pragmatic implementation. It satisfies the seamless switching between
operating environment, enables developers to tap into the large pool of Player
device drivers, while helping assure that the robot will be capable of handling
real-time, real world conditions.

5.5 Conclusions

The Miro framework is based upon CORBA capabilities and services; thus they are
already tightly integrated. The integration with 1D, 2D and 3D simulations is more
problematic. As detailed in Section 4.6, current simulators do not support all UV
classes. The most suitable simulator is Player/Stage/Gazebo, which supports UGVs
and a single UAV platform. The Simulation Environments Section concluded a project
might have to be initiated that extends the capability of Player/Stage/Gazebo to support
more UAV models and to include support for both UUVs and UGSs. This approach
would require adding UV classes to both the Stage 2D simulator and the Gazebo 3D
simulator. The modification of both the 2D and 3D simulators could imply a significant
work effort. To minimise the effort required an extension to only the Gazebo 3D
simulator could be considered. This would entail sacrificing of the 2D simulation
capabilities for the simplification of integrating the simulation environment into the
architecture for autonomy. The trade offs between eliminating the 2D simulation
environment and the effort required to implement this environment must be further
investigated before a plan of action can be determined.

DRDC Suffield TR 2004-287 59

6. Conclusions

The report presents a detailed investigation into the issues surrounding distributed
intelligence and autonomy in the context of multi-vehicle control, providing a guide to
the necessary technologies supporting distributed intelligence. The report has reviewed
multi-robot architectures, control architectures for robots, the infrastructures services
required by autonomous unmanned vehicles and techniques for integrating all the
required services on to an autonomous vehicle. Multi-vehicle control and the
distribution of intelligence and capabilities within a vehicle team depend on the ability
to easily and transparently communicate between physically remote platforms.
Similarly, the internal multi-threaded control architecture of a single autonomous
vehicle requires that physically separate computing, sensing, and control elements
seamlessly communicate with one another. These two major design constraints were
illustrated and clearly show the necessity for an organized industrial strength common
standard to both inter and intra-vehicle communication and computing.

To effectively distribute intelligence modules within and between UVs a layered
modular hardware design[20] and portable, maintainable coding practice[21] require an
architecture that, at once, inherently supports and encourages distributed computing,
and frees investigators to focus on the development of intelligent single and
multi-vehicle control systems. An architecture founded on these elements defines, at a
high level, the links between various software components that create an operational
vehicle. Ideally, architectures should seamlessly transition between real vehicle control,
system diagnosis through the replay of gathered data and the control of a vehicle in a
simulated world. Ideally, the investigator is then free to develop intelligence algorithms
without vehicle implementation distractions. When satisfied with the simulated
performance, the investigator can safely execute algorithms on a physical vehicle.
Conversely, with the vehicle operating, data from the environment can be gathered,
archived, and replayed within a simulated environment to investigate, debug and
optimize the performance of an algorithm.

As described in this document, the MIRO framework and ACE/TAO foundations
exemplify highly modular, extensible, and reusable components that offer direct
research benefits. Extensible, scalable, distributed, and modular components will ease
installation across DRDC systems and, significantly, will simplify cooperation with
other research institutions. Components achieve these goals by using defined interfaces
to share information between processes19. These critical interfaces permit sharing of
information with other components, inherently allowing information distribution. The
distribution details remain hidden from the researcher, allowing full research effort to
focus on increasing vehicle capabilities.

Despite the clear advantages of the proposed framework, the introduction of simulation
remains problematic. A simulation system that supports all UV classes, including
UAVs, UGVs, UGSs and UUVs is desirable, but at this time no single simulator has all

19Player/Stage/Gazebo exemplifies the research utility of well defined interfaces for lab-scale systems.

60 DRDC Suffield TR 2004-287

these capabilities. However, one solution to this problem is to extend the capabilities of
the Gazebo 3D simulator to support more vehicle classes. Currently supporting only
ground and air vehicles, Gazebo appears to be extensible to UUVs, USVs, and UGSs.

When all of these capabilities are taken together, an open, powerful foundation for UV
research and development in both real and simulated worlds becomes apparent. This
foundation simplifies the creation and integration of new capabilities, and encourages
software re-use on heterogeneous platforms. With these tools and techniques, future
work will inherently support distributed operations that focus research on the
intelligence within and between multiple autonomous unmanned vehicles.

DRDC Suffield TR 2004-287 61

References

1. J.S. Albus, R. Lumia, and H.McCain. Hierarchical control of intelligent machines
applied to space station telerobots, 1987.

2. R.L. Andersson. Understanding and applying a robot ping-pong players expert
controller. In Proceedings 1989 IEEE Int. Conf. on Robotics and Automation,
pages 1284–1289, 1989.

3. R.C. Arkin. Motor schema based mobile robot navigation. International Journal of
Robotics Research, 8(4), August 1987.

4. R.C. Arkin. Reactive control as a substrate for telerobotic systems. IEEE
Transactions on Robotics and Automation, 8(4), June 1991.

5. Ronald C. Arkin and Johnathan Diaz. Line-of-sight constrained exploration for
reactive multiagent robotic teams.

6. H. Asama, K.Ozaki, A. Matsumoto, Y. Ishida, and I. Endo. Development of task
assignment system using communication for multiple autonomous robots. Journal
of Robotics and Mechatronics, 4(2):122–127, 1992.

7. Tucker Balch and Ronald C. Arkin. Communication in reactive multiagent robotic
systems. Autonomous Robots, 1(1):27–52, 1994.

8. Tucker Balch and Ronlad C. Arkin. Behavior-based formation control for
multi-robot teams. IEEE Transactions on Robotics and Automation, 1999.

9. R. Beckers, O.E. Holland, and J.L. Deneubourg. From local actions to global tasks:
Stigmergy and collective robotics. In R. Brooks and P. Maes, editors, Artifical Life
IV. MIT Press, 1994.

10. F. Bolton. Pure CORBA: A code intensive premium reference. SAMS, 2002.

11. R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack.
Experiences with and architecture for intelligent, reactive agents. Journal of
Experimental and Theoretical Artificial Intelligence, 9(2):237–256, 1997.

12. V. Braitenberg. Vehicles: Experiments in synthetic psychology. MIT Press, 1984.

13. A. Brooks, T. Kaupp, A. Makarenko, and A. Oreback. Orca.
http://orca-robotics.sourceforge.net/index.php, 2004.

14. R.A. Brooks. A Robot that Walks: Emergent Behaviours from a Carefully Evolved
Network, chapter 24, pages 28–39. Artificial Intelligence at MIT. The MIT Press,
1989.

15. R.A. Brooks. Robotic Science, chapter 11, The Whole Iguana, pages 432–456. The
MIT Press, 1989.

62 DRDC Suffield TR 2004-287

16. R.A. Brooks. A Robust Layered Control System for a Mobile Robot, chapter 24,
pages 2–27. Artificial Intelligence at MIT. MIT Press, 1989.

17. R.A. Brooks. Artificial IntelligenceMemo No. 1293: Intelligence without Reason.
Massachusetts Institute of Technology, 1991.

18. R.A. Brooks. Intelligence without representation. Artificial Intelligence,
47:139–159, 1991.

19. Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, RA-2(1):14–23, March 1986.

20. G. Broten and S. Monckton. Unmanned ground vehicle electronic hardware
architecture. Technical memorandum, DRDC, 2004. Suffield TM 2004-122.

21. G. Broten, S. Verret, and B. Digney. Unmanned ground vehicle software
development environment. Technical Memorandum TM 2004-060, Defence R&D
Canada - Suffield, February 2004.

22. Philippe Caloud, Wonyun Choi, Jean-Claude Latombe, Claude Le Pape, and Mark
Yim. Indoor automation with man mobile robots. In IEEE International Workshop
on Intelligent Robots and Systems, pages 67–72, Tsuchiura, Japan, 1990.

23. Y. Uny Cao, Alex S. Fukunaga, and Andrew B. Kahng. Cooperative mobile
robotics: Antecedents and directions. Autonomous Robots, 4(1):7–23, March 1997.

24. Paul Cohen, Michael Greenberg, David Hart, and Adele Howe. Real-time problem
solving in the phoenix environment. COINS Technical Report 90-28, U. of Mass.,
Amherst, 1990.

25. R. Colbaugh, H. Seraji, and K.L. Glass. Obstacle avoidance for redundant robots
using configuration control. Journal of Robotic Systems, 6(6):722–744, 1989.

26. J.H. Connell. Minimalist Mobile Robotics. Academic Press, 1990.

27. C. Cote, D. Letourneau, F. Michaudand J-M. Valin, Y. Brosseau, C. Raievsky,
M. Lemay, and V. Tran. Code reusability tools for programming mobile robots. In
IROS. IEEE/RSJ International Conference on Intelligent Robots and Sstems, 2004.

28. D. Levine D. Schmidt and S. Mungee. The design and performance of real-time
object request brokers. Computer Communications, 21:294–324, April 1998.

29. Torbjorn S. Dahl, Maja J. Matarić, and Gaurav S. Sukhatme. Adaptive
spatio-temporal organization in groups of robots. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’02), pages 1044–1049,
Lausanne, Switzerland, September 2002.

30. J.L. Deneubourg, S. Goss, N. Franks, A. Sedova-Franks, C. Detrain, and
L. Chretien. The dynamics of collective sorting: Robot-like ants and ant-like
robots. In J.A. Meyer and S.W. Wilson, editors, Simulation of Adaptive Behavior,
Animals to Animats, 1991.

DRDC Suffield TR 2004-287 63

31. University of Ulm Department of Computer Science. Miro. University of Ulm,
0.9.4 edition, November 2003.

32. Gregory Dudek, Michael R. M. Jenkin, Evangelos Milios, and David Wilkes. A
taxonomy for multi-agent robotics. Autonomous Robots, 3:375–397, 1996.

33. R. Johnson E. Gamma, R. Helm and J. Vlissides. Design Patterns: Elements of
resuable Object-Oriented Software. Addison-Wesley, 1994.

34. Kjerstin I. Easton and Alcherio Martinoli. Efficiency and optimization of explicit
and implicit communication schemes in collaborative robotics experiments. In
IEEE Conference on Intelligent Robots and Systems IROS-02, pages 2795–2800,
Lausanne, Switzerland, September 2002. IEEE Press.

35. S. Enderle, H. Utz, S. Sablatnog, S. Simon, G. Kraetzschmar, and G. Palm. Miro -
middleware for autonomous mobile robots. International Federation of Automatic
Control, 2001.

36. C. Ferrell. Robust Agent Control of an Autonomous Robot with Many Sensors and
Actuators. PhD thesis, Dept. of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1993.

37. Rafael Fierro, Aveek Das, John, Spletzer, Joel Esposito, Vijay Kumar, James P.
Ostrowski, George Pappas, Camillo J. Taylor, Yerang Hur, Rajeev Alur, Insup Lee,
Greg Grudic, and Ben Southall. A framework and architecture for multi-robot
coordination. The International Journal of Robotics Research, 21(10-11):977–995,
October-November 2002.

38. R. Firby. Adaptive Execution in Complex Dynamic Worlds. PhD thesis, Yale
University, Dept. of Computer Science, 1989.

39. Message Passing Interface Forum. Mpi: A message-passing interface standard.
Technical report, University of Tennessee, Knoxville, 1995.

40. Donald E. Franklin, Andrew B. Kahng, and M. Anthony Lewis. Distributed
sensing and probing with multiple search agents: toward system-level landmine
detection solutions. In Detective Technologies for Mines and Minelike Targets,
Proceedings of SPIE, volume 2496, pages 698–709, 1995.

41. Jakob Fredslund and Maja J Matarić. Robot formations using only local sensing
and control. In IEEE International Symposium on computationl Intelligence for
Robotics and Automation (CIRA-2001), Banff, Canada, July 2001.

42. Wikipedia: The free encyclopedia. Collective intelligence.
http://en.wikipedia.org/wiki/Collective_intelligence, 2004.

43. S. Schneider G. Pardo-Castellote and M. Hamilton. Ndds: The real-time
publish-subscribe middleware. Real-Time Innovations, Inc., 1999.

64 DRDC Suffield TR 2004-287

44. Douglas W. Gage. Command control for many-robot systems. Unmanned Systems,
10(4):28–34, Fall 1992.

45. J. Giesbrecht, J. Collier, and S. Monckton. Staged experiments in mobile vehicle
autonomy. Technical memorandum, DRDC, 2004. Suffield TM 2004-288.

46. J. Gowdy. Ipt: An object oriented toolkit for interprocess communication.
Technical Report CMU-RI-TR-96-07, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, March 1996.

47. J. Gowdy. A qualatative comparision of interprocess communications toolkits for
robotics. Technical Report CMU-RI-TR-00-16, Carnegie Mellon University, June
2000.

48. Jay Gowdy. Emergent Architectures: A Case Study for Outdoor Mobile Robots.
PhD thesis, Carnegie Mellon University, 2000.

49. R. Hartley and F. Pipitone. Experiments with the subsumption architecture. In
Proc. 1991 IEEE Int. Conf. on Robotics and Automation, pages 1652–1658, April
1991.

50. M. Henning and S. Vinoski. Advanced CORBA Programming with C++.
Addison-Wesley, 1999.

51. Terry Huntsberger, Paolo Pirjanian, Ashitey Trebi-Ollennu, Hari Das Nayar, Hrand
Aghazarian, Anthony J. Ganino, Mike Garrett, Sanjay S. Joshi, and Paul S.
Schenker. Campout: A control architecture for tightly coupled coordination of
multirobot systems for planetary surface exploration. IEEE Transactions os
Systems, Man, and Cybernetics - Part A: Systems and Humans, 33(5), September
2003.

52. S. Huston, J. Johnson, and U. Syyid. The ACE Programmer’s Guide.
Addison-Wesley, 2004.

53. IEEE. The CLARAty Architecture for Robotic Autonomy, Big Sky, MT, March
2001.

54. Leggat J. Technology Investement Strategy For the Next two Decades. Defence
R&D Canada, 2001.

55. W. Shackleford J. Michaloski, F. Proctor. The neutral message language: A model
and method for message passing in heterogeneous environments. In Proceedings of
the World Automation Conference, Maui, Hawaii, June 2000.

56. J. Jennings and C. Kirkwood-Watts. Distributed mobile robotics by the method of
dynamic teams. In Conference on Distributed Autonomous Robot Systems, 1998.

57. R. Johnson. Frameworks.
http://st-www.cs.uiuc.edu/users/johnson/frameworks.html#Papers, 2004. Defintion
from his website.

DRDC Suffield TR 2004-287 65

58. M.B. Leahy Jr. and G.N. Saridis. A behaviour based system for off road navigation.
IEEE Transactions on Robotics and Automation, 10(6):776–782, December 1994.

59. O. Khatib. Real time obstacle avoidance for manipulators and mobile robots. In
Proceedings IEEE Int. Conf. on Robotics and Automation, 1985.

60. O. Khatib. A unified approach for motion and force control of robot manipulators:
The operational space formulation. IEEE Transactions on Robotics and
Automation, RA-3(1):43–53, February 1987.

61. E. Klavins and D. Koditschek. A formalism for the composition of concurrent
robot behaviours. In IEEE International Conference on Robotics and Automation,
pages 3395–3402, San Fransisco, CA, 2000.

62. S. Koenig, R. Goodwin, and R. Simmons. Xavier: A robot architecture based on
partially observable markov decision process models. Artificial Intelligence and
Mobile Robots: Case Studies of Successful Robot Systems, 1998.

63. K. Konolige and K. Myers. The saphira architecture for autonomous mobile robots.
Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot
Systems, 1998.

64. C. Ronald Kube and Eric Bonabeau. Cooperative transport by ants and robots.
Robotics and Autonomous Systems, 30(1/2):85–101, 2000. ISSN: 0921-8890.

65. C. Ronald Kube and Hong Zhang. Collective robotics: From social insects to
robots. Adaptive Behavior, 2(2):189–218, 1994.

66. D.C. MacKenzie, J.M. Cameron, and R.C. Arkin. Specification and execution of
multiagent missions. In Proceedings 1995 IROS Conference, 1995.

67. Maja J. Matarić. Using communication to reduce locality in distributed multi-agent
learning. Journal of Experimental and Theoretical Artificial Intelligence,
10(3):357–369, Jul-Sep 1998. special issue on Learning in DAI Systems, Gerhard
Weiss, ed.

68. Maja J. Matarić, Martin Nilsson, and Kristian T. Simsarian. Cooperative
multi-robot box-pushing. In IEEE/RSJ IROS, pages 556–561, 1995.

69. M.J. Mataric. Interaction and Intelligent Behaviour. PhD thesis, Dept. of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology, May
1994.

70. M. Minsky. Excerpts from The Society of Mind, volume 1, chapter 10, pages
245–269. The MIT Press, 1990.

71. Mark W. Moffet. Cooperative food transport by an asiatic ant. National
Geographic Research, 4(3):386–394, 1988.

66 DRDC Suffield TR 2004-287

72. J. Morrow and P. Khosla. Manipulation task primitives for composin robot skills.
In IEEE International Conference on Robotics and Automation, pages 3354–3359,
1997.

73. Fabrice R. Noreils. Toward a robot architecture integrating cooperation between
mobile robots: Application to indoor environment. The International Journal of
Robotics Research, 12(1):79–98, February 1993.

74. M. Lindstrom A. Oreback and H. Christensen. Berra: A research architecture for
service robots. In International Conference on Robotics and Automation, 2000.

75. Chris A. C. Parker, Hong Zhang, and C. Ronald Kube. Blind bulldozing: Multiple
robot nest construction. In IEEE Conference on Intelligent Robots and Systems
IROS-03, 2003.

76. Christopher Parker and Hong Zhang. Robot collective construction by blind
bulldozing. In IEEE Conference on Systems Cybernetics and Man, 2002.

77. L.E. Parker. An experiment in robotic cooperation. In Proceedings of the ASCE
Specialty Conference on Robotics and Automation for Challenging Environments,
February 1994.

78. Lynne E. Parker. Alliance: An architecture for fault tolerant multi-robot
cooperation. IEEE Transactions on Robotics and Automation, 14(2):220–240,
April 1998.

79. Lynne E. Parker. Distributed Autonomous Robotic Systems 4, chapter Current State
of the Art in Distributed Robot Systems, pages 3–12. Springer, 2000.

80. J . Pedersen. Robust communications for high bandwidth real-time systems.
Technical Report CMU-RI-TR-98-13, Carnegie Mellon University, 1998.

81. I. Nourbakhsk R. Powers and S. Birchfield. Dervish: An office navigation robot.
AI Magazine, 16(2):53–60, 1995.

82. J.E. Pratt. Virtual model of a biped walking robot. Master’s thesis, Dept. of
Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, August 1995.

83. M.H. Raibert and H.B. Brown Jr. Experiments in balance with a 2d one legged
hopping machine. Transactions of the ASME, Journal of Dynamic Systems and
Control, 106:75–81, March 1984.

84. Craig W. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, July 1987.

85. J.K. Rosenblatt. DAMN: A distributed architecture for mobile navigation. In
Proceedings of the 1995 AAAI Spring Symposium on Lessons Learned from
Implemented Software Architectures for Physical Agents , H. Hexmoor and D.
Kortenkamp (Eds.). AAAI Press, Menlo Park, CA., March 1995.

DRDC Suffield TR 2004-287 67

86. J.K. Rosenblatt and C.Thorpe. Combining multiple goals in a behavior-based
architecture. In Proceedings of 1995 International Conference on Intelligent
Robots and Systems (IROS), Pittsburgh, PA, August 1995.

87. M. Montemerlo N. Roy and S. Thrun. Perspectives on standardization in mobile
robot programming: The carnegie mellon navigation (CARMEN) toolkit. In
Proceedings of the Conference on Intelligent Robots and Systems (IROS), 2003.

88. Dunbar W. S. and Klein B. Mining, mineral processing, and mini-machines. CIM
Bulletin, 95(1057), January 2002.

89. T. Sandholm and V. Lesser. Issues in automated negotiation and electronic
commerce: Extending the contract net framework. In International Conference on
Multiagent Systems, pages 328–335, 1995.

90. C. Schlegel. Communication Patterns for OROCOS Hints, Remarks and
Specification. Research Institue for Applied Knowlege Processing (FAW),
Helmholtzstasse 16, Ulm Germany, 0.12 edition, Feb. 2002.

91. D. Schmidt and S. Huston. C++ Network Programming Volume 1.
Addison-Wesley, 2002.

92. D. Schmidt and F. Kuhns. An overview of the real-time corba specification. IEEE
Computer special issue on Object-Oriented Real-time Distrubuted Computing,
2000.

93. H. Seraji, R. Steele, and R. Ivlev. Sensor based collision avoidance: Theory and
experiments. Journal of Robotic Systems, 13(9):571–586, 1996.

94. R. Simmons. The inter-process communications (ipc) system, 1991.
http://www-2.cs.cmu.edu/afs/cs/project/TCA/www/ipc/ipc.html.

95. R. Simmons. Structured control for autonomous robots. IEEE Transactions on
Robotics and Automation, 10(1), February 1994.

96. Reid Simmons, Trey Smith, M. Bernardine Dias, Dani Goldberg, David
Hershberger, Anthony Stentz, and Robert Zlot. A layered architecture for
coordination of mobile robots. In Multi-Robot Systems: From Swarms to
Intelligent Automata, Proceedings from the 2002 NRL Workshop on Multi-Robot
Systems. Kluwer Academic Publishers, May 2002.

97. K. Sycara and D. Zeng. Coordination of multiple ingelligent software agents.
International Journal of Cooperative Information Systems, 5(2-3), 1996.

98. C. Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading, MA, 1998.

99. W. Tang and H. Zhang. Decentralized control of robot formation marching. In
Sixth International Symposium on Robotics and Manufacturing, Montepellier,
France, May 27-30 1996.

68 DRDC Suffield TR 2004-287

100.D. Terzopoulos, X. Tu, and R. Grzeszczuk. Artificial fishes with autonomous
locomotion, perception, behavior, and learning in a simulated physical world. In
Proceedings of Artificial Life IV Workshop, July 1994.

101.Ashitey Trebi-Ollennu, Hari Das Nayar, Hrand Aghazarian, Anthony Ganino,
Paolo Pirijanian, Brett Kennedy, Terry Huntsberger, and Paul Schenker. Mars rover
pair cooperatively transporting a long payload. In IEEE International Conf. on
Robotics and Automation (ICRA), pages 3136–3141, Washington, DC, May 2002.

102.H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschmar. Miro - middleware for
mobile robot applications. IEEE Transactions on Robotics and Automation, June
2002.

103.M. van de Panne and E. Fiume. A controller for the dynamic walk of a biped
across variable terrain. In Proceedings of the 31st IEEE conference on Decision
and Control, 1992.

104.Sean Verret, Hong Zhang, and Max Q.-H. Meng. Collective sorting with local
communication. In Proc. IROS’04, IEEE/RSJ International Conference on
Intelligent Robots and Systems (in press), Japan, September 2004.

105.Sean R. Verret. Perception and communication – their relationship in collective
sorting. Master’s thesis, University of Alberta, Edmonton, Alberta, September
2004.

106.W.G. Walter. An imitation of life. Scientific American, 182(5):42–45, May 1950.

107.W.G. Walter. A machine that learns. Scientific American, 185(2):60–63, August
1950.

108.Jing Wang. Drs operating primatives based on distributed mutual exclusion. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
1085–1090, Yokohama, Japan, 1993.

109.Jens Wawerla, Gaurav S. Sukhatme, and Maja J. Matarić. Collective construction
with multiple robots. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2696–2701, Lausanne, Switzerland, 2002.

110.M. Wellman and P. Wurman. Market-aware agents for a multi-agent world.
Robotics and Autonomous Systems, pages 115–125, 1998.

111.L. Wills, S. Kannan, S. Sander, M. Guler, B. Heck, J.V.R. Prasad, D. Schrage, and
G. Vachtsevanos. An open platform for reconfigurable control. IEEE Control
Systems Magazine, June 2001.

DRDC Suffield TR 2004-287 69

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Suffield
PO Box 4000, Medicine Hat, AB, Canada T1A 8K6

2. SECURITY CLASSIFICATION
(overall security classification of the document
including special warning terms if applicable).

UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C,R or U) in parentheses after the title).

Towards Distributed Intelligence (U)

4. AUTHORS
(Last name, first name, middle initial. If military, show rank, e.g. Doe, Maj. John E.)

Broten, G. ; Monckton, S. ; Giesbrecht, J. ; Verret, S. ; Collier, J. ; Digney, B.

5. DATE OF PUBLICATION (month and year of publication of document)

December 2004

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc).

86

6b. NO. OF REFS (total cited in
document)

111

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered).

Technical Report

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include address).

Defence R&D Canada – Suffield
PO Box 4000, Medicine Hat, AB, Canada T1A 8K6

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research and
development project or grant number under which the document was
written. Specify whether project or grant).

42zz78

9b. CONTRACT NO. (if appropriate, the applicable number under which
the document was written).

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document number
by which the document is identified by the originating activity. This
number must be unique.)

DRDC Suffield TR 2004-287

10b. OTHER DOCUMENT NOs. (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to the Document
Availability (11). However, where further distribution beyond the audience specified in (11) is possible, a wider announcement audience may be
selected).

Unclassified

Unclassified

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable that the
abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification of the
information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include here abstracts in
both official languages unless the text is bilingual).

Unmanned Ground Vehicle (UGV’s) Research and Development within the Autonomous Land Systems (ALS)
project will assist the Canadian Forces in fulfilling their future mandate. The ALS project derives its focus from
the Autonomous Intelligent Systems (AIS) activity outlined by the DRDC Technology Investment Strategy
(TIS).

There are five anticipated classes of Unmanned Vehicles (UV): fixed or rotor wing aircraft Unmanned Air
Vehicles (UAV); typically tracked, wheeled, legged Unmanned Ground Vehicles (UGV); stationary monitoring
Unattended Ground Sensors (UGS); untethered, propellor or bouyancy driven, Unmanned Underwater Vehi-
cles (UUV); and light propellor driven Unmanned Surface Vehicles (USV). The future battlespace demands
compatibility between all UV classes. All UVs must have an inherent ability to share information if they are to
provide the desired force multipication factor for the future asymetric battlespace.

To effectively distribute intelligence modules within and between UVs, layered modular hardware design
and portable, maintainable coding practice require an architecture that, at once, intrinsically supports and
encourages distributed computing, and frees investigators to focus on the development of intelligent single
and multi-vehicle control systems. An architecture founded on these elements defines, at a high level, the
links between various software components that create an operational vehicle. Ideally, architectures should
seamlessly transition between real vehicle control; system diagnosis through the replay of gathered data;
and the control of a vehicle in a simulated world. Ideally, the investigator is then free to develop intelligence
algorithms without vehicle implementation distractions. With satisfactory simulated performance, algorithms
may be safely run on a physical vehicle. Conversely, historical data gathered from a real vehicle run can be
replayed in a simulated environment to investigate, debug and optimize the algorithm performance.

This document explores the depths of the multi-vehicle architecture problem using the past experience of
other investigators, the apparent technological evolution of both hardware and software, and the demands
of the future CF environment. This report overviews fundamental methods in multi-vehicle cooperation and
coordination, single vehicle autonomous control, and the underlying infrastructure of real and simulated sys-
tems.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful in
cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade
name, military project code name, geographic location may also be included. If possible keywords should be selected from a published thesaurus. e.g.
Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it not possible to select indexing terms which are Unclassified, the
classification of each should be indicated as with the title).

multi-robot, intelligence, collective, distributed, autonomy, control, simulation, modularity, frameworks, com-
ponents, inter-process communications, middleware, CORBA, ACE, TAO, Miro

Unclassified

Unclassified

